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Abstract
Accelerometer is the predominant sensor used for low-

power context detection on smartphones. Although low-
power, accelerometer is orientation and position-dependent,
requires a high sampling rate, and subsequently complex
processing and training to achieve good accuracy. We
present an alternative approach for context detection using
only the smartphone’s barometer, a relatively new sensor
now present in an increasing number of devices. The barom-
eter is independent of phone position and orientation. Us-
ing a low sampling rate of 1 Hz, and simple processing
based on intuitive logic, we demonstrate that it is possi-
ble to use the barometer for detecting the basic user activ-
ities of IDLE, WALKING, and VEHICLE at extremely low-
power. We evaluate our approach using 47 hours of real-
world transportation traces from 3 countries and 13 individ-
uals, as well as more than 900 km of elevation data pulled
from Google Maps from 5 cities, comparing power and
accuracy to Google’s accelerometer-based Activity Recog-
nition algorithm, and to Future Urban Mobility Survey’s
(FMS) GPS-accelerometer server-based application. Our
barometer-based approach uses 32 mW lower power com-
pared to Google, and has comparable accuracy to both
Google and FMS. This is the first paper that uses only the
barometer for context detection.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Signal pro-

cessing

General Terms
Algorithms, Experimentation
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1 Introduction
With smartphones now reaching the computational power

of personal computers, they are expected to behave intel-
ligently: they should silently understand what the user is
doing, help in ongoing or future tasks, and adapt accord-
ingly. Google Now (July 2012) and Siri (Oct 2011), for ex-
ample, behave as intelligent personal assistants. Cover [1],
an Android application released in Oct 2013, automatically
adapts the applications displayed on the lockscreen based on
whether the user is at home/work/travelling. Google utilizes
the user’s activity and movement to improve the quality of
location readings [2].

A key ingredient of such intelligent smartphone behaviour
is context-awareness. The phone needs to continuously un-
derstand what the user is doing. Context is typically de-
rived from the multitude of sensors on the phone. Since the
phone’s battery life-time is critical, context-detection algo-
rithms must run at extremely low-power. In this regard, Ap-
ple and Google have taken the first steps forward to reducing
power consumed for walking and step detection, by intro-
ducing the M7 co-processor [3] (Sept 2013) and step counter
[4] (Oct 2013) to offload sensor processing from the main
CPU when the phone is asleep.

Transportation-mode detection is a special case of
context-awareness where the phone automatically under-
stands the user’s daily commute. Such awareness is im-
mensely useful for maintaining activity diaries, conducting
surveys, and urban planning. For example, Moves [5], the
first to make use of Google’s Activity Recognition API [6],
is a popular application that maintains an activity diary for
the user, and was featured in the Google I/O session in May
2013 when the API was introduced.

Being one of the lowest-power sensors available on the
phone, accelerometer is the predominantly used sensor in
transportation-mode detection [7]. It can detect acceleration
in the phone’s 3 axial directions. Using supervised machine
learning and features extracted from the accelerometer read-
ings, user activity can be classified as IDLE, WALKING or
VEHICLE.

Although accelerometer is low-power, its readings are
phone orientation and position-dependent, as well as user
and vehicle-dependent. The machine learning algorithm
needs to be trained for all these different possibilities. To de-
tect walking and vehicle activities accurately, sampling rate



is typically 10 Hz and above. The high sampling rate, 3 axial
directions, and position dependence make the classification
complicated and increases power consumption (Section 6.4).

In this paper, we present an alternative approach to
context-detection using only the barometer, a sensor now
found in an increasing number of devices today1, which mea-
sures air pressure. Pressure can in turn be translated to alti-
tude (height). Barometers were initially introduced on An-
droid phones to reduce the delay of the GPS fix by providing
the z co-ordinate (altitude). Since the MEMS sensor is sensi-
tive enough to measure even a 1 metre change in height, they
are also used for floor-change detection, and can differentiate
between travelling on stairs/elevator. Some applications are
attempting to crowd-source pressure data for weather fore-
casting [8, 9]. Fitness applications use change in height to
better estimate calorie consumption.

We present the first paper that uses only the barometer
for transportation context-detection. The barometer is in-
herently orientation and position-independent. Using a low
sampling rate of 1 Hz, coupled with the new sensor-batching
hardware, and using relatively simple processing based on
intuitive logic, we demonstrate that the barometer can be
used for basic context detection of the user activities IDLE,
WALKING, and VEHICLE at extremely low power. These
states are sufficient to characterise typical transportation con-
text, and can act as a trigger for other higher-power finer-
granularity classification of vehicular modes.

We evaluate our approach using 47 hours of transporta-
tion traces from 3 countries and 13 individuals. We com-
pare the accuracy and power consumption to two other ap-
proaches: Google’s accelerometer-based Activity Recogni-
tion algorithm [6], which runs at low power, and Future Ur-
ban Mobility Survey’s (FMS) GPS and accelerometer server-
based approach [10, 11], an app developed by the Singapore-
MIT Alliance for Research and Technology (SMART), in
conjunction with the Singapore government’s Household In-
terview Travel Survey (HITS). FMS is the first smartphone
survey app to have been field-tested on a large deployment
of over 1000+ users in Boston and Singapore, designed as
an alternative to traditional surveys done via in-person inter-
views in HITS.

We chose FMS and Google as baselines due to their wide
deployment and usage. In our evaluation, we find that our
barometer-based approach consumes 32 mW lower power in
comparison to Google, and has comparable accuracy to both
Google as well as FMS.

In addition to real-world trace data, we have also evalu-
ated our algorithm using over 900 km (30,000 data points) of
elevation data available on Google Maps from 5 cities. The
accuracy results from map data are similar to real-world trace
data, and provide convincing evidence that sufficient eleva-
tion changes do occur in practice for barometer to detect user
context.

We have implemented our approach on Android. It runs
in real-time on the phone locally, without requiring internet
connection.

1Nexus 4, Nexus 5, Galaxy Nexus, Galaxy S3/4/5, Galaxy Note 1/2/3,
and many more

The rest of the paper is organised as follows: Section
2 discusses related work. Section 3 describes the motiva-
tion of using the barometer for context detection. A brief
background is given in Section 4, and the context-detection
methodology is described in Section 5. Section 6 evaluates
the barometer approach. This is followed by a discussion in
Section 7, and Section 8 concludes the paper.

2 Related Work
Research has been done in context-detection using sen-

sors for several years, differing in the type of user activi-
ties detected, sensors used, and classification techniques. An
extensive survey is presented in [7]. Accelerometer is the
predominant sensor used, with 28 out of 36 papers listed us-
ing it. Other commonly used sensors include GPS, Cellular,
and WiFi. In the following, we focus on prior work using
these sensors, describing their limitations, while section 3
discusses how the barometer overcomes these limitations.

• GPS: GPS is an extremely useful sensor for activity
detection, since it provides the physical location of the
user. A series of GPS readings can be analysed to cal-
culate speed and bearing, typically used in combination
with accelerometer features to achieve higher classifi-
cation accuracy. Reddy et al. [12] and Ryder et al.
[13] use GPS in conjunction with accelerometer to de-
tect the modes idle/walking/running/bike/vehicle, and
observe that GPS contributes to an increase in accu-
racy of about 10%. The Future Urban Mobility Survey
(FMS) application [10, 11] uses GPS and accelerome-
ter to detect the modes walking/car/bus/MRT/bike, ob-
serving an increase of 27% in accuracy over just using
an accelerometer sampled at 10 Hz. In contrast, Zheng
et al. [14] uses solely GPS data to detect the modes
walking/driving/bus/bike, by extracting additional fea-
tures such as heading change rate, stop rate, and ve-
locity change rate. The trade-off in GPS accuracy is
its high power usage and low coverage indoors, under-
ground, and in urban canyons. To reduce power usage,
GPS is turned on adaptively rather than periodically, us-
ing accelerometer and/or cell tower change as a trig-
ger. However, the power usage remains high outdoors,
where charging sockets are typically unavailable.

• Cellular and WiFi: Movement can also be detected us-
ing change in cellular and WiFi signals. Anderson and
Muller [15] use fluctuation in cellular signal strength to
figure out if the user is stationary/walking/driving, as
does Sohn et al. [16]. Using signal strength is chal-
lenging since it can change unpredictably even when
the user is stationary. Nawaz et al. [17] use a more
robust WiFi beacon reception ratio as opposed to sig-
nal strength, to detect if a user has parked or is driv-
ing a car. An algorithm called BeaconPrint [18] uses
cellular/WiFi beacon IDs to detect movement, without
requiring any signal strength information. Since WiFi
has shorter range and the network deployment is denser,
change in signal is observed faster than change in cellu-
lar signal. However, WiFi-based techniques work only
in urban areas with dense WiFi access points. Cellular



has better coverage, but cell size can vary significantly,
making cellular-based detection difficult to generalize.

• Accelerometer: The lowest-power and most predomi-
nant sensor used for context detection is the accelerom-
eter. Features extracted from accelerometer data are in-
put to a supervised machine learning algorithm, which
classifies the user activities. Due to classifier complex-
ity, majority of prior work perform classification offline
[19] instead of in real-time. Reddy et al. [12] imple-
ment their classifier on Nokia N95 phones, while per-
forming the training offline, as does [20]. To avoid
orientation problems, orientation-independent features
(such as combined magnitude) can be used [19]. How-
ever, extensive training is still required to account for
user and position dependence. Unlike Cellular and
WiFi, accelerometer is capable of fine-grained classifi-
cation of vehicular modes. Hemminki et al. [21] imple-
ment a three-stage classifier on Android to detect trav-
elling on bus/train/metro/tram/car, at a power consump-
tion of 85 mW (excluding base-power consumption).
Our barometer-based approach can be used as a low-
power trigger for higher-power finer-grained vehicular
classification.

• Barometer: Barometer has been used for aiding GPS
[22], the reason for its introduction into Android smart-
phones. Tanigawa et al. [23] uses barometer as an aid in
removing accelerometer drift. Due to its excellent rela-
tive accuracy, barometer has been used for floor-change
detection [24, 25]. Stairs and elevator can be easily dis-
tinguished using vertical speed thresholds. [24] uses a
sampling rate of 1 Hz, similar to our paper. A higher
sampling rate of 15 and 25 Hz can be used to reduce
noise [25]. However, since newer barometer chips sup-
port internal hardware smoothing, a high sampling rate
is no longer required. So far, barometer has been used
only as an aid to other sensors. To the best of our knowl-
edge, no prior work has used only barometer for detec-
tion of the modes idle/walking/vehicle.

3 Motivation
Prior work have used multiple sensors including GPS,

Cellular, WiFi, and accelerometer for context detection.
Then why it is advantageous to use barometer for the same
purpose?

Although several sensors are available, each has its own
set of limitations in low-power activity detection, listed in
Table 1. GPS consumes high power, and has poor coverage
indoors and underground. In contrast, the barometer sensor
is one of the lowest powered sensors on the phone, and is
available for use everywhere. WiFi and cellular-based ap-
proaches are better than GPS power-wise, but do not work
without sufficient density of access points and cell towers.
The barometer, on the other hand, is not dependent on any
external infrastructure.

Accelerometer, like barometer, is low-power, and not de-
pendent on external infrastructure. Consequently, it has
become popular for context-detection. However, even ac-
celerometer has drawbacks. By nature, accelerometer data

is dependent on the phone’s position (is the phone in a bag,
pocket, or hand), and its orientation. Additionally, the read-
ings vary from user to user, and vehicle to vehicle. Ev-
ery user handles a phone differently, and different vehicles
may produce different vibrations in the phone while mov-
ing. These dependencies can be offset by using orientation-
independent features and training the machine learning algo-
rithm with each dependency case. However, addressing these
dependencies adds to the cost and complexity of the system,
increasing power consumption. Majority of prior accelerom-
eter work implement the classification offline instead of on
the phone, concentrating on accuracy but neglecting power.

As we demonstrate later in this paper, barometer is inher-
ently position-independent, requires simple processing and
only minor calibration based on the terrain, overcoming all
the drawbacks of accelerometer.

To summarize, barometer has the following advantages:

• Position-independence: Barometer measures air pres-
sure, and is inherently position-independent, as long as
the phone is not kept in an air-tight environment.

• Simpler calibration: Accelerometer depends on the
position, orientation, user, and vehicle, and requires suf-
ficient training to work well in all cases. Barometer re-
duces dependencies drastically: it only requires calibra-
tion of a few parameters using the overall characteristics
of the terrain of the land, which remains relatively un-
changed over time.

• Better WAIT detection: In transportation applications,
one of the important aspects of the journey is the wait-
ing time. While accelerometer is excellent for detecting
when the phone is stationary, it faces problem when the
user fiddles or makes minor movements with the phone,
triggering false positives. This is especially problematic
when accelerometer is used to trigger higher power sen-
sors like GPS. Barometer, unaffected by phone move-
ments, yields fewer false positives compared to ac-
celerometer for user movement (Section 6.1.3 compares
the accuracy of accelerometer and barometer for the
WAIT state).

• Lower-power: Barometer’s lower sampling rate and
simpler processing reduce power consumption. Table 2
shows how the sampling rate can affect power usage (A
higher sampling rate causes the sensor driver to be wo-
ken up more frequently). Sampling accelerometer at 20
Hz increases base power consumption by 112%, while
sampling barometer at 1 Hz increases it only by 2%
(For more details on the measurement settings, please
see Section 6.4). Note that actual sampling rate is typi-
cally higher than what is specified to the Android Sen-
sor Manager (for example, Galaxy S3 returns barometer
values at 5 Hz rather than 1 Hz).

Accelerometer data in 3 axial directions is both a boon
and a bane. It provides more information, but complicates
processing. This paper ultimately tries to answer the ques-
tion: Is one-dimensional height data more useful than three-



Table 1: Limitations of existing sensors for low-power activity detection

Sensor Power Limitations Barometer advantage
GPS Very high Lack of indoor/underground coverage Usable everywhere

High power usage Ultra-low-power
WiFi/Cellular High/Moderate Requires dense access points/cellular towers No external infrastructure
Accelerometer Low Extensive training required Simple calibration based on terrain

Classification complexity Simple processing
Position dependence Inherently position independent

Table 2: Power Usage at different sampling rates (Galaxy
S3, screen and data off, no sensor data processing. Accl
and barometer power include CPU awake power. Note
that actual sampling rate is higher than what is specified
to the Android sensor manager)

Power (mW) Increase over
base power

Accl (20 Hz) 230 112%
Accl (10 Hz) 180 67%
Accl (2 Hz) 164 51%
Baro (1 Hz) 110 2%

CPU Awake (base) 108 x
CPU Asleep 25 x

dimensional accelerometer data? In other words, can more
be done with less data?

4 Background
In order to better understand the barometer sensor charac-

teristics, strengths, and sources of error, it is constructive to
look at the MEMS barometer at a deeper level.

Popular MEMS barometers are of the piezoresistive type.
They consist of a thin diaphragm over a small air cavity
of near vacuum pressure [26]. Piezoresistors are arranged
on the diaphragm in the form of a wheatstone bridge cir-
cuit (Figure 1). The external atmosphere exerts a pressure
over the diaphragm, causing it to get depressed into the air
cavity. This deflection causes a change in resistance of the
piezoresistors, which in turn changes the voltage output of
the wheatstone bridge. Using two or more calibration points,
the change in voltage can be translated into corresponding air
pressure values in millibar. The entire MEMS package is ex-
tremely small (for example, Bosch’s BMP280 barometer on
Nexus 5 measures 2 x 2.5 x 0.95 mm).

Possible sources of error in barometer are as follows:

• Vibration: One would expect that a phone move-
ment or vibration would cause a major deflection in the
diaphragm, leading to unpredictable pressure values.
However, this is not the case. We conducted an experi-
ment where we vibrated a Nexus 4 phone in the phone’s
3 axial directions (one by one) using strong approxi-
mately 1 cm oscillations. However, this did not cause a
change in the noise value (1 metre without smoothing),
nor cause outliers. This is perhaps due to the small size

Air Cavity 

Diaphragm

Cross-

Section

Top

View

R1

R2

R4

R3

Figure 1: Simplified cross-section of MEMS piezoresis-
tive barometer (adapted from [27])

of the diaphragm (in contrast, the MEMS accelerometer
uses rods in order to amplify vibrations).

• Temperature: A temperature above or below room
temperature (25 deg) causes a change in the resistance
of the piezoresistors, leading to errors. Earlier barome-
ter chips used a thermistor to compensate for this tem-
perature error. Current chips contain a temperature sen-
sor bundled into the package. The driver reads both
pressure as well as temperature, and compensates for
the error in software. Since the errors are usually second
order or higher, a quadratic compensation is more effec-
tive than a linear compensation [28]. Since the barom-
eter driver is part of the Android Open Source Project,
we can check which phones perform the necessary tem-
perature compensation (Table 3). Our experiments with
Galaxy S3 show us that the error caused by using a lin-
ear instead of a quadratic correction is small, and does
not affect our context-detection algorithm.

• Installation bias and aging drift: Installation bias
(offset caused by soldering) is taken care of at the end of
the phone’s production line. Aging drift, which causes
a drift in absolute pressure values as the barometer chip
grows older, is in the order of months, and does not af-
fect our algorithm which runs at a small time scale of a
few minutes.

• Weather drift: Change in weather can cause a change
in air pressure, and consequently a change in calculated
height, even when the phone is still. Typical weather



Table 3: Summary of barometer chips on popular phones

Baro Chip Phones Temp Sensor Temp Compensation Oversampling Noise filter
LPS331AP (STM) Galaxy S3 Yes Linear (on chip) Yes No
BMP180 (Bosch) Galaxy Nexus/S4, Nexus 4 Yes Quadratic (in driver) Yes No
BMP280 (Bosch) Nexus 5 Yes Quadratic (in driver) Yes Yes

drift is a few metres in an hour, but intense storms can
cause a drift of 3 to 4 metres even in 10 minutes. We
discuss and evaluate weather effects in more detail in
Section 6.1.2.

• Sunlight and wind: The diaphragm and resistors, if ex-
posed, will be affected by sunlight and wind. However,
the barometer is protected under the phone’s outer case
from direct light. The MEMS package contains only a
tiny air hole to capture air pressure, protecting it from
wind. This matches our observations in windy weather
(section 6.1.2).

Barometer chips come with the capability to internally
oversample and smooth pressure values to reduce noise. Our
inspection of the driver code tell us that the chips are already
configured at optimized settings. Table 3 summarises the
chips found on popular phones.

Air pressure (in millibar) can be translated into height (in
metres) above sea level. The absolute accuracy of the height
depends on the sea level reference pressure used, and the
time of the day. In other words, for the same reference level,
the barometer can very well report significantly different alti-
tudes at different times of the day. To get an accurate estima-
tion of altitude, the mean sea level pressure for the phone’s
region needs to be fetched from a local weather website at
that time of the day, and used as a reference.

However, our context-detection algorithm does not re-
quire absolute accuracy, but rather good relative accuracy.
Barometer chips on newer phones are sensitive enough to
measure a change in height of even 1 metre, the reason why
it is so useful for floor-change detection. The barometer’s
good relative accuracy is a strength exploited by our algo-
rithm. Note that the height resolution is limited by the noise,
which is approximately 1 metre without filtering. Nexus 5’s
chip, which performs internal filtering, has a lower noise
value than other chips.

The study in [25] tests whether the change in height (i.e.
relative accuracy) varies on different phones. Although dif-
ferent phones can report different absolute height values, the
change in height values on different phones while moving
are in sync.

In summary, by looking deeper into the MEMS barome-
ter, we find that the main source of height error is weather
drift. We will evaluate the impact of weather drift in section
6.1.2.

5 Methodology
In this section, we describe how exactly we use barometer

to detect the states of IDLE, WALKING and VEHICLE.
5.1 Activity Definitions

Before describing our methodology, we need to first de-
fine the meaning of each state to avoid ambiguity. The state

VEHICLE includes both motorised and non-motorised ve-
hicles (including cycling). The state IDLE is not as strict
as the typical definition in accelerometer-based works, since
barometer is unaffected by hand movements. If a user moves
around in the same room or floor of a building, we still con-
sider it as an IDLE state. We argue that in the context of
transportation, such movements should be clearly differen-
tiated from the WALKING and VEHICLE states since these
movements include important transportation context such as
waiting at bus stops, taxi stands and subway platforms. This
definition also yields fewer false positives compared to ac-
celerometer when movement is used to trigger high power
sensors such as GPS.

The states IDLE, WALKING, and VEHICLE are sufficient
to characterise typical transportation context. Several pop-
ular applications such as Cover [1] and Moves [5] already
make use of these fundamental three states. The VEHICLE
state can also act as a trigger for other higher-power finer-
granularity classification of vehicular modes. Similarly, ad-
ditional sensors can be utilized to differentiate between sta-
tionary and waiting for transport.
5.2 Intuition behind barometer context-

detection
This section describes the intuitive logic based on which

barometer context-detection is possible.
Roads are not perfectly flat. Their height changes slightly

even when it is not visually obvious to the naked eye. The
barometer is sensitive enough to measure this change in
height when a vehicle moves along a road. Vehicle detection
is based on the intuition that vehicles, because of their higher
speed, tend to see more ups and downs and more rapid height
changes, than walking in the same period of time (Note that
vehicle bumps and jerks do not cause significant changes in
height).

The graphs in Figure 2 explain this idea pictorially. The
graphs are examples of traces we collected, that plot the vari-
ation in height value and user’s ground truth versus time (In
the graphs, the state LAZY is the same as IDLE). As can be
observed, the number of ups and downs and the rate of height
change increase considerably when the user is in a vehicle
(Figures 2a, 2b and 2c). On the other hand, a user walking
about in the same floor of a mall (considered as IDLE by
our definition) sees very little change in height, and no ups
and downs at all (Figure 2d). A user who is walking on a
road does see change in height, but however does not expe-
rience the large number of ups and downs as in VEHICLE.
The height variation between WALKING, IDLE, and VEHI-
CLE can be best observed in Figure 2a.

To summarise, barometer context-detection is based on
the intuitive logic that users in vehicles see more rapid
changes in height, including larger number of ups and
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(b) Commute on a bus in Singapore
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(c) Subway ride in Singapore
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(d) Walking between floors in a mall

Figure 2: Some examples of height variation against time for different user states

downs. Users who are walking see a gradual change in
height. Users who are idle do not see any change in height.

5.3 Overview of Context-Detection Algorithm
Figure 3 gives a high-level overview of the barome-

ter context-detection algorithm. It consists of four stages:
Pre-processing, jump detection (Jumpdet), peak detection
(Peakdet), and walk detection.

Jumpdet and peakdet are jointly responsible for VEHI-
CLE detection. Based on the order of the stages, it can be
seen that a determination of VEHICLE state overrides a de-
termination of WALKING state. This is due to the fact that
barometer is better at detecting vehicles than it is at WALK-
ING (section 6.1).

The following sections discuss each stage of the algorithm
in order.

5.4 Pre-processing
The barometer is sampled at a frequency of 1 Hz. Phones

like Nexus 4 return values at a higher sampling rate (typically
4 Hz), in which case the sampling rate is clamped to 1 Hz in
code. In phones like Nexus 5, due to internal smoothing,
values are returned at a lower rate, usually every 2 seconds.

In this case, linear interpolation is used to convert the actual
rate into 1 Hz.

The pressure values returned by the barometer driver on
Android is in millibar. This is converted to height in metres
using the standard pressure-height formula [29]:

h = 44330∗

(
1−
(

p
p0

) 1
5.255
)

where h is the altitude in metres, while p and p0 are the mea-
sured air pressure and sea level reference pressure respec-
tively in millibar. This conversion of pressure into height is
available as a helper method in Android. The sea level ref-
erence does not matter in our algorithm, since we only use
relative height change.

The height values are typically noisy (1 metre noise on
average). They are smoothened using a simple filter:

currentHeight = α∗ sensorHeight +(1−α)∗ prevHeight

where α is 0.1. On Nexus 5, the barometer chip performs
smoothing internally, and is not required in code. Figure 4
shows an example of the barometer sensor data after it has
been smoothened.
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5.5 Vehicle detection
The following two sections describe the logic used to de-

tect the VEHICLE state, namely Jumpdet and Peakdet.
5.5.1 Jump detection (Jumpdet)

Vehicles that move at a high speed, or vehicles that move
on highly sloped roads tend to observe a large rate of height
change. In other words, they undergo ‘jumps’ in height, both
in the up and down direction. We can detect such vehicles
using what we term as ‘Jump Detection’ (Jumpdet).

We define a ‘jump’ as a height change of more than 0.8
metres in 5 seconds. For every height reading obtained from
the barometer (1 Hz), we check if there is jump in height,
by calculating the difference with a height reading obtained
5 seconds earlier. We keep track of the number of jumps
observed in a 200 second sliding window, along with their
sign (up or down).

Our experiments have shown us that walking does not
cause height jumps, even on sloped roads, since the speed
of walking is limited. An exception to this is when a person
takes the stairs/escalator or elevator, all of which make it eas-
ier for a person to gain/lose vertical height with less effort.
We can distinguish this from vehicle using the intuition that
vehicles move both up and down, unlike a person that moves
only up or only down the stairs/elevator.

When we observe that the ratio of the number of positive
to negative jumps in the sliding window is in the range [30%,
70%], we classify the movement as vehicle. For the ratio to
be meaningful, we calculate it only when the total number of
jumps is more than 10. By capping the ratio to [30%, 70%],
we ensure that we are seeing both positive as well as negative

jumps in the sliding window of time, before deciding that the
user’s state is vehicle.
5.5.2 Peak detection (Peakdet)

Vehicles may move at a slower speed on roads that are not
highly sloped, due to slow traffic or frequent stops. In such
cases, Jumpdet fails to work since the rate of height change
is not large enough. Instead, we detect such vehicles using
what we term as ‘Peak detection’ (Peakdet).

Peakdet is based on the intuition that vehicles, due to their
higher speed, observe a larger number of ups and downs in
a given period of time compared to a person on foot. Every
height reading from the barometer is fed through peak detec-
tion, a simple but online signal processing algorithm that can
detect peaks and valleys in a signal of specified vertical size
(in our case, we set the size to 1 meter).

While roads can be hilly, they are not undulating, i.e. the
distance between ups and downs in a road are large and not
small. Our experiments have shown us that a person on foot
takes more than 200 seconds to cover the distance between
undulations on highly sloped road, due to the large distance
between them and slow walking speed.

Peakdet keeps track of the number of peaks and valleys in
the height signal in a 200 second sliding window. If the num-
ber of peaks is more than 1, then the movement is classified
as vehicle.
5.6 Walk and Idle detection

A user who is walking would see gradual rather than rapid
changes in height (exceptions are while travelling on the
stairs/escalator/elevator). The detection of IDLE and WALK-
ING is based on the fact that height varies while walking, but
is stable while idle.

Our algorithm calculates the stddev value of height in a
200 second sliding window. When the stddev rises above a
threshold (0.3 metres), we classify the movement as walking,
and idle otherwise.

Due to weather drift, the height tends to change over time,
even when the user is idle. However, weather drift occurs
over a larger time scale, and does not affect our algorithm
which runs on a time scale of 200 seconds. Section 6.1.2
analyses the affect of extreme weather on our algorithm.
5.7 High-level Stitching

The vehicle detection described in the previous sections
leads to a fragmented output due to long vehicle stops (for
example at traffic lights). These fragments need to be
stitched together to capture the transportation context at the
user’s level. We employ a simple stitching algorithm: Two
vehicle detections occurring less than 2 minutes apart are
stitched together. This simple algorithm stitches the vehicle



states together into a transportation journey more meaningful
to the user and applications. To avoid false vehicle detections
while idle or walking, vehicle state detections of less than 30
seconds duration are ignored.

5.8 Choice of thresholds and window sizes
In our algorithm, we use four configuration values,

namely: the jump threshold (0.8 metres), the peakdet vertical
height threshold (1 metre), the walking stddev threshold (0.3
metres), and the sliding window size (200 seconds). These
values are characteristic of the overall terrain of the land.

For our algorithm, we have chosen the configuration val-
ues experimentally based on 10 hours of barometer traces
collected before our evaluation’s traces. In our evaluation us-
ing real-world traces and map elevation data, we find that the
same configuration values however work well even in places
with different terrains (section 6), and find that the algorithm
performs well even without re-calibration.

6 Evaluation
We evaluate our work based on accuracy, power con-

sumption, and latency, comparing it with two other ap-
proaches:

1. Google Activity Recognition: This is an
accelerometer-based context detection algorithm
implemented by Google [6]. Released in May 2013,
it is part of the Google Play API, and is capable of
detecting the modes IDLE, WALKING, VEHICLE, and
CYCLING. Since it runs at very low power, we use
this as a baseline for power consumption. The activity
detection runs at an update interval specified by the
application developer. Unless otherwise specified, in
our evaluation the update interval is set to 10 seconds,
since that is the highest frequency possible. We have
used the Activity Recognition algorithm present in
Google Play Services version 4.3, which was the latest
version available in March 2014 when the trace data
was collected.

2. Future Urban Mobility Survey (FMS) App: This is
a GPS and accelerometer-based context detection im-
plemented by the Singapore-MIT Alliance for Research
and Technology (SMART) group in Singapore, in con-
junction with the Singapore government’s Household
Interview Travel Survey (HITS). They have developed
a smartphone application for iOS and Android, called
FMS, to conduct household travel surveys as an alter-
native to the traditional HITS approach of conducting
in-person interviews. It is the first survey application
to be deployed and tested on a large scale, on over
1000+ users in Boston and Singapore. Since volunteers
took both the FMS and HITS survey, the accuracy of
the app has been thoroughly validated using the ground
truth. The FMS application works by uploading sensor
data to the FMS server, which in turn runs the context-
detection using machine learning. Users can access the
FMS website to validate the travel information. To re-
duce power consumption and minimize data upload, the
FMS application duty cycles even the accelerometer,
and uses a very low sampling rate of 2 Hz when it is

turned on. The accelerometer in turn is used as a trigger
for the GPS, which is sampled at 1 Hz, and duty cycled
even during the vehicle journey.

Our evaluation is based on 178 hours of barometer traces
(of which 47 hours are transportation journey traces) col-
lected from 3 countries with the help of 13 volunteers. 15
hours of data was collected from Singapore by 7 volunteers,
while 10 hours of data was collected from Boston (USA)
by 6 volunteers. In addition, 22 hours of data was collected
from a cross-country train in China by a single individual.
During data collection, barometer sensor data was logged to
the sdcard of the phone at a frequency of 1 Hz. For Singa-
pore, volunteers additionally collected context output from
the Google algorithm and FMS application.

Table 4 provides a summary of the traces collected from
each country. There are more than 32 hours of vehicle activ-
ity and 15 hours of walking activity in total. As volunteers in
Boston often leave the apps running on the phone for a long
period of time while they are in office after they have com-
pleted their journeys, there are more than 40 hours of idle or
stationary activity in this set of traces. This was also the case
in China, with 85 hours of idle activity.

Volunteers were instructed to run the apps while carry-
ing phones during their daily commute. No special instruc-
tions were given on how to carry the phones, and none of
the journeys were decided beforehand. Volunteers recorded
the ground truth by pressing buttons on the phone. Ground
truth included activity at the user’s level; low-level ground
truth such as vehicle stops and minor walking stops were not
logged. Use of this high-level ground truth yields a more
realistic analysis of performance of the activity detection al-
gorithms at the user’s level.

In addition to these journey traces, we have also collected
additional barometer traces to analyse the effect of weather
drift (section 6.1.2), and to compare the accuracy of barome-
ter algorithm with Google in a special case of the IDLE state
(waiting) in section 6.1.3, and in a special case of the VEHI-
CLE state (subway) in section 6.1.4.

The phones used by volunteers include Nexus 5, Nexus
4, Galaxy S3, and Galaxy S4, all updated to Jelly Bean.
Our barometer-based detection algorithm processes the col-
lected barometer data via a discrete-event trace-based sim-
ulator. The simulator is written such that the barometer al-
gorithm code written in the simulator can be directly copied
into the phone’s application code. Since the simulator is de-
terministic and operates at a relatively large time scale (1
second) compared to processing, the output of the simulator
matches that of running on the phone. Several traces have
been checked to see that this is indeed the case, to ensure
simulator correctness.

The Google and FMS algorithms are not simulated. The
output of Google’s detection is logged into a file in the
phone, while the FMS detection results are available on the
FMS website in the ‘Activity Diary’ of each user.

6.1 Accuracy
Accuracy is calculated by splitting each trace’s timeline

into intervals, and checking whether the context determined



Table 4: Summary of collected sensor trace data

Country Volunteers Total hours Vehicle hours Walking hours Idle hours
Singapore 7 15 6.5 6.4 2.1

Boston (USA) 6 55.95 3.75 7.8 44.4
China 1 108.5 22 1.5 85

Table 5: Barometer algo versus Google (Accl) and FMS
(GPS+Accl) Detection in Singapore

Baro FMS Google GoogleSmooth
Idle 76% 33% 76% 76%

Walking 54% 46% 79% 91%
Vehicle 81% 90% 31% 34%
Overall 69% 68% 56% 62%

Table 6: Barometer algo versus Google (Accl) detection
in China

Baro Google GoogleSmooth
Idle 99% 97% 98%

Walking 23% 40% 50%
Vehicle 78% 24% 25%
Overall 93% 82% 83%

by the three algorithms matches the ground truth in each in-
terval. The accuracy is calculated as the fraction of the total
number of intervals that the user activity is correctly identi-
fied. An interval size of 200 seconds was chosen to effec-
tively eliminate intermittent short-duration states (our accu-
racy calculation discards any interval where there is a transi-
tion in the ground truth).

For fairness of comparison, we have implemented a ma-
jority voting scheme for smoothing of Google’s fragmented
output using a window size of 200 sec (this gave bet-
ter results compared to smaller window sizes). In this
paper, we refer to the smoothened Google algorithm as
‘GoogleSmooth’.

Since all three algorithms are only available for Singa-
pore, we will first present the accuracy comparison for this
set of traces. Table 5 summarizes the results of the ac-
curacy calculation for the traces from Singapore, for each
algorithm and user state. Clearly, each algorithm has its
own strengths and weaknesses. Google activity recogni-
tion, which is accelerometer-based, performs well for IDLE
(76%) and WALKING (79%) detection, but doesn’t perform
well for VEHICLE detection, achieving only 31% accuracy
(the evaluation in Section 6.1.4 further illustrates this point).
FMS, due to its use of GPS, has good VEHICLE accuracy
(90%), but performs poorly in IDLE and WALKING detec-
tion. Both accuracies are below 50%. Our barometer-based
approach does well for VEHICLE and IDLE detection, due
to its independence of vehicular vibrations and user move-
ments. The accuracy for WALKING state detection is how-
ever much lower.

Table 7 shows the confusion matrix for barometer detec-
tion for Singapore. There are two factors that contribute to
lower WALKING accuracy. Due to the long sliding window
used in barometer detection, the algorithm has a significant
latency before it decides the user has gotten off the vehicle.
WALKING states which usually happen right after VEHICLE
states are classified incorrectly. The second factor is the ter-
rain of the land. Sometimes, roads may not be sloped enough
for the height to significantly change while walking. This
is an inherent limitation of our approach. If the threshold
for height change is set too low, then changes in barometer
readings caused by drift or environmental changes will be
wrongly classified as walking. We fix the WALKING de-
tection problem by fusing barometer and accelerometer in
Section 6.5.

Tables 8 and 9 show the confusion matrices for Google
activity recognition and FMS. The main source of error in
Google’s approach is in the VEHICLE detection. As the ve-
hicle journey includes rides on subway which can be smooth
between stations, and periods of traffic congestion on bus
where movement is slow, the algorithm maps these vehicles
states to the idle state in 38% of the cases. As for the FMS
approach, it is unable to correctly determine the difference
between idle and walking states in many instances.

The reason for the low detection accuracy of IDLE and
WALKING by the FMS application is two-fold. First, it
samples the accelerometer at a frequency of 2 Hz, which
is much lower than related work in the literature, in order
to save power and amount of data uploaded. Second, to re-
duce CPU awake power consumption, it duty cycles even
the accelerometer, and hence there are periods of time where
accelerometer data may be unavailable. Note that unlike ma-
jority of related work, FMS is a real large-scale deployment,
and needs to prioritize power over accuracy.

Table 6 compares the barometer approach with Google’s
algorithm in China. As in the case of Singapore, Google per-
forms relatively better for WALKING, while our barometer
algorithm has better accuracy for VEHICLE, in contrast to
Google’s poor VEHICLE accuracy. Majority of vehicle data
from China was collected in a cross-country train, in order to
cover larger area of terrain. These results convince us further
that sufficient terrain variations indeed occur for barometer
to detect user activity.

Note that the WALKING detection accuracy of Google’s
algorithm is much lower in China (40%) compared to Singa-
pore (79%) since the volunteer in China was with his kids,
and may not have marked the ground truth for the short
WALKING periods as accurately as for the long VEHICLE
cross-country train. For Singapore and Boston, on the other
hand, any trace where the ground truth was discovered to
be marked incorrect during interview with the volunteer was



Table 7: Confusion Matrix for Barometer Algo

Idle Walking Vehicle
Idle 76% 19% 5%

Walking 19% 54% 27%
Vehicle 6% 13% 81%

Table 8: Confusion Matrix for Google

Idle Walking Vehicle Unknown
Idle 76% 0% 0% 24%

Walking 10% 79% 0% 11%
Vehicle 38% 6% 31% 25%

discarded. For China, however, we did not discard the trace
since only a single trace was available.

The effect of smoothing on Google’s context detection
(GoogleSmooth) can be seen in Tables 5 and 6. While
smoothing improves WALKING detection, the VEHICLE
accuracy remains low since Google outputs IDLE majority
of the time in subways/trains. Consequently, the overall ac-
curacy did not improve much for Google by smoothing.

6.1.1 Location dependence
In this section, we evaluate the accuracy for Boston and

China using the algorithm settings designed for Singapore.
This allows us to test how sensitive the setting of our al-
gorithm is, and also allows us to test the barometer value
sensitivity at different locations. Note that besides hav-
ing different terrain variation, Boston has a very different
weather pattern, in particular temperature ranges, than Sin-
gapore (Boston traces were collected during the polar vortex
in 2014). Table 10 shows the accuracy of barometer-based
context-detection for all 3 countries together. Note that the
IDLE traces of Boston and China are included in the accu-
racy calculation, to check for any effect of weather patterns
on IDLE detection.

As we can see from the table, accuracy of VEHI-
CLE and IDLE detection still remained high, indicating
that barometer-based detection can potentially work well
in different locations even without re-calibration. How-
ever, the WALKING detection remains low and indicates a
need for addition sensor fusion technique to complement the
barometer-based sensing to improve accuracy. This will be
discussed in Section 6.5.

Table 9: Confusion Matrix for FMS

Idle Walking Vehicle
Idle 33% 34% 33%

Walking 37% 46% 17%
Vehicle 6% 4% 90%

Table 10: Barometer Algo accuracy for different loca-
tions

Singapore Boston China
Idle 76% 85% 99%

Walking 54% 40% 23%
Vehicle 81% 72% 78%
Overall 69% 79% 93%
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Figure 5: Barometer context detection during a rainy day
(ground truth = IDLE). Shows diurnal pressure cycles.

6.1.2 Weather dependence
Unlike accelerometer and GPS, barometer is affected by

drift due to weather. To analyse the effect of weather on
barometer detection, we separately collected 29 hours of
traces with raining and windy weather conditions from Sin-
gapore. The phone was kept idle and we check if changes in
barometer readings under such weather conditions can trig-
ger false positives and detect IDLE as either WALKING or
VEHICLE.

The accuracy of IDLE detection was found to be 96%, in-
dicating that weather does not have a significant impact on
the barometer detection algorithm. This is due to the fact that
weather drift tends to be on a larger time scale than the slid-
ing window of our detection algorithm. Rather than cause
unpredictable height variations as one might expect, weather
drift is usually in one direction, and gradual, typically fol-
lowing the diurnal pressure cycles. This is shown in Fig-
ure 5. Similarly, windy weather does not produce significant
drift in barometer. An example of how the readings change
is shown Figure 6.

Finally, during the period of traces collection in Singa-
pore and Boston, there are periods of dry weather (extended
periods without rainfall), heavy thunderstorms, and snow-
fall. This further demonstrates that our approach of using
barometer sensors to determine relative height change is not
significantly affected by weather patterns.

6.1.3 Accuracy of WAIT state
To illustrate how barometer can be advantageous for

IDLE detection, we collected a separate 30 minute trace of
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Figure 6: Barometer context detection during a windy
day (ground truth = IDLE)
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Figure 7: Google context detection while waiting at bus
stop for 30 minutes (ground truth = IDLE)

waiting at a bus stop, running both Barometer and Google
detection algorithms, while keeping the phone in hand.

We observed that even minor movements of the
hand (while web browsing, for example), causes the
accelerometer-based Google algorithm to get confused and
output the state as UNKNOWN (see Figure 7). Consequently,
it has a low accuracy for IDLE detection of just 25%. Barom-
eter, in contrast, is unaffected by hand movements, and the
accuracy is almost 100%.

6.1.4 Accuracy of subway state
Use of accelerometer to determine vehicle movement de-

pends significantly on the movement patterns of the vehicle
in use. This is unlike the use of barometer, where height
change is relevant. To illustrate this issue, we collected a
vehicle trace on the subway, running both barometer and
Google algorithms.

The subway ride between two stations is generally quite
smooth with limited vibrations and jerks, except near sta-
tions. The accelerometer-based Google algorithm has diffi-
culty classifying the user’s state as VEHICLE, and has a poor
accuracy of 15%. A sample 1 hour subway ride segment is
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Figure 8: Google context detection on Subway (ground
truth = VEHICLE)
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Figure 9: Barometer context detection on Subway
(ground truth = VEHICLE)

shown in Figure 8 where Google’s approach often classifies
the state as IDLE.

On the other hand, barometer relies only on air pressure
to detect height change. This approach has a high detection
accuracy of almost 100%. While it may not be obvious to
a human, there is substantial height variations in the paths
travelled by the subway both in underground tunnels and on
above the ground train tracks, making it easy for the barom-
eter to detect a subway ride. The same activity segment but
with output states determined by our algorithm is shown in
Figure 9.

The better accuracy of barometer over accelerometer in
vehicle can be additionally observed from the results in the
China cross-country train, where Google had a poor accu-
racy of 24%, while barometer accuracy was 78%. To sum-
marize, although accelerometer works well in vehicles with
substantial vibrations (such as in cars and buses), it performs
poorly in smooth vehicles like subways. Barometer works
well irrespective of the type of vehicle.



6.1.5 Note on Google’s Algorithm
The version of Google’s algorithm used in our evaluation

was Google Play Services 4.3, the latest version available at
the time of collection of trace data in March 2014.

Google appears to have significantly modified their activ-
ity recognition algorithm in subsequent releases of Google
Play Services, which can now distinguish between WALK-
ING and RUNNING. The algorithm is also more sensitive to
phone movement, enabling it to better detect subway rides.
We compared the accuracy of Version 4.3 (March 2014) and
Version 5.0 (August 2014)2 in the subway. The new version
has a significantly higher accuracy of 81%, compared to the
older version with accuracy of 22%.

However, the extra sensitivity of the new version also
leads to a larger number of VEHICLE false positives caused
by minor hand movement. We compared the accuracy of the
old and new version while waiting for a bus. The old version
detected 3% VEHICLE false positives, while the new version
performed poorly with 88% VEHICLE false positives (Note
that both the old and new version have a low WAITING de-
tection accuracy, since the old version reports UNKNOWN
most of the time, as observed in Section 6.1.3). This compar-
ison shows that while the extra sensitivity in the new version
enables better subway detection, it causes a large number of
false positives due to minor hand movement when the user is
idle.
6.2 Simulation using Map elevation data

In addition to real-world trace data, we have manually
pulled over 900 km (30,000 data points) of elevation data
from non-overlapping roads of 5 cities from Google Maps.
Using map elevation data, we can evaluate the accuracy of
our algorithm in a larger number of places over larger ge-
ographic areas having substantially different terrains, espe-
cially where we do not have real-world trace data available.
An additional advantage is that we can vary the speed of
travel and check the effect on accuracy.

Map elevation data was collected from roads in Kansas
City (USA), San Francisco (USA), Lausanne (Switzerland),
as well as from Singapore and Boston. Data was collected
at 30 meter points, which is the highest resolution possible.
Elevation data in between points are interpolated. This data
has been used to emulate barometer sensor data, and fed to
our algorithm to evaluate accuracy.

Table 11 shows the accuracy of barometer algorithm at
different speeds. Two walking speeds (5 and 8 kmph) and
three vehicle speeds (25, 35 and 50 kmph) are considered.
5 kmph is the average walking speed of a person, while 8
kmph is a fast pace. Note that the accuracy of vehicle for
speeds higher than 50 kmph is expected to be higher, since
number of ups and downs encountered would also be higher,
and is hence not shown in Table 11.

Note that even in places like Kansas, sufficient terrain
variations occur while travelling for barometer to distinguish
between user states. Even at very low vehicle speed of 25
kmph, accuracy is high, which increases with increasing

2The apk of every Google Play Services release is available online and
can be installed for accuracy comparison

Table 12: Comparison of terrain characteristics (stddev
in brackets)

Avg Elevation Avg Peak
Change (m) Distance (m)

Kansas City 0.84 (0.99) 479 (494)
San Francisco 1.05 (1.17) 645 (709)

Lausanne 1.04 (1.19) 395 (536)
Singapore 0.69 (0.65) 332 (252)

Boston 0.56 (0.66) 476 (435)

Table 13: Latency (sec) for each user state for barometer
and Google algorithms (stddev in brackets)

Baro Google
Idle 176 (142) 78 (66)

Walking 158 (138) 26 (24)
Vehicle 211 (192) 122 (135)

speed. Walking detection accuracy is lower, but can be fixed
using fusion with accelerometer (Section 6.5).

Table 12 compares the terrain characteristics of the 5
cities, calculated using over 30,000 elevation data points,
each spaced at 30 meters intervals, collected manually over
non-overlapping roads from Google Maps. Average Peak
Distance is the average distance between ups and downs on
the road. In other words, if you plot a graph of elevation ver-
sus distance travelled, peak distance is the distance between
two peaks in the graph. Smaller the value, more undulated
the terrain, i.e. more peaks and valleys are encountered over
the same distance travelled. From Table 12, Lausanne and
Singapore have the most undulated terrain.

Average Elevation Change is the average change in eleva-
tion for every 30 metres of distance travelled. A higher value
of average elevation change indicates higher road steepness.
From Table 12, San Francisco and Lausanne have the steep-
est roads.

The accuracy of our barometer-based detection algorithm
using map elevation data over these different terrains gives
us confidence that this approach can indeed be generalized
to other cities as well.
6.3 Latency

Barometer and Google detection algorithms run in real-
time on the phone. In this section we compare the latency of
these algorithms (FMS, in contrast, uploads data to the server
and does post-processing). Latency is calculated as the aver-
age delay between transition to a user state, and detection of
that state by the algorithm in question (for example, the av-
erage delay between a person starting to walk and the walk
activity being detected). Table 13 lists the latency for each
user state for both Google and barometer algorithms.

Google algorithm’s IDLE latency is low since it is has
been designed to detect even short vehicle/walking stops.
However, applications typically prefer to ignore short user
stops (detected by Google’s algorithm), and rather fo-
cus on longer stops (detected by our barometer-based al-



Table 11: Accuracy of barometer-based context detection algorithm using map elevation data at different speeds

Vehicle (50 kmph) Vehicle (35 kmph) Vehicle (25 kmph) Walk (5 kmph) Walk (8 kmph)
Kansas City 96% 93% 89% 73% 56%

San Francisco 92% 90% 76% 74% 66%
Lausanne 84% 83% 79% 58% 50%
Singapore 99% 99% 98% 63% 32%

Boston 99% 97% 91% 66% 58%

gorithm) which indicate higher-level user activities like
home/office/shopping.

For VEHICLE state, both Google and barometer algo-
rithms have higher latencies (2 to 3.5 min). This is due to
the poor VEHICLE detection of Google’s algorithm and the
long sliding window of our barometer-based algorithm. The
impact of this latency on applications depends on the jour-
ney duration. Analysis of real-world bus trip data from Sin-
gapore over 2,256,911 bus trips shows that the average dura-
tion of a bus ride is 14 minutes, while the maximum duration
can be as large as 156 minutes. For long bus trips, we expect
the VEHICLE latency to be acceptable, since it is a fraction
of the total bus trip duration.

Applications interested in WALKING state (Eg: Fitness
apps) require low latency. We exploit the low latency of
WALKING detection of Google’s algorithm by fusing both
barometer and Google algorithms together in Section 6.5.

Note that although Google’s activity detection has over-
all lower latency than our proposed barometer-based detec-
tion algorithm, the output of Google’s algorithm is highly
fragmented, a consequence of it being too reactive to state
change.
6.4 Power Usage

In this section, we compare power consumption of barom-
eter context-detection to Google’s Activity Recognition.
Measurements were performed on Galaxy S3 using the Mon-
soon Power Monitor. Our application is run in the back-
ground after acquiring a wake lock to keep CPU processing
on. The screen and all wireless interfaces as well as data sync
are kept switched off. The Android OS is unmodified and un-
rooted version 4.3, which came bundled with the phone from
the manufacturer.

Barometer data is sampled using the Android sensor man-
ager API. Note that although we specify 1 Hz to the sensor
manager, the Galaxy S3 driver returns data at a higher rate of
5 Hz. However, we clamp and process data at 1 Hz in code.

The Google algorithm does not run continuously. It runs
for 5 seconds each time it is triggered. For an update in-
terval of 10 seconds, the program is triggered every 10 sec-
onds, runs for 5 seconds, and sleeps for the remaining 5 sec-
onds (Figure 10b). In contrast, the barometer based context-
detection runs continuously. The power consumption can
be further reduced if sensor batching is utilized. This is di-
cussed in Section 7.

Since the accelerometer sampling rate and calculations in-
volved are higher, the power usage is also correspondingly
high. Barometer, on the other hand, uses lower power due to
its low sampling rate and simple calculations involved (refer
to Figures 10a and 10b).

Table 14: Power usage

Power (mW)
CPU Idle 25

CPU Awake 85
Google 120

Baro 88

Table 14 shows the power consumption. The power val-
ues listed for barometer and Google approaches include the
base CPU awake power, sensing power, as well as compu-
tation power. Note that the Galaxy S3 phone used in Table
2 was a different phone, which is why the base CPU awake
power is different, perhaps due to a difference in the Android
version.

In spite of running continuously, the barometer-based
algorithm consumes 32 mW lower power than the
accelerometer-based algorithm. Google consumes 35 mW
over the base power, while barometer uses only 3 mW over
the base power, a significant improvement.

We had a detailed discussion with the authors of [25]
on the measurement methodology. The power measurement
methodology in their work differs significantly from ours in
several aspects. First, they run the power measuring app in
foreground rather than background. Second, they do not pro-
cess sensor data but log sensor readings to the sdcard. Fi-
nally, the accelerometer and barometer were read and pro-
cessed at different frequencies. Conversely, as we elaborated
at the beginning of this section, we run our power measuring
app in the background, process the sensor readings (either
with Google’s algorithm for the accelerometer or ours for
the barometer), and do not save the readings to sdcard.

6.5 Fusion of barometer and accelerometer
We can fuse both barometer and accelerometer algorithms

together to increase detection accuracy. Although the power
consumption increases compared to using a single algorithm,
with the advent of sensor hubs and offloading of activity de-
tection into hardware, power consumption may reduce dras-
tically, making it worthwhile to fuse multiple sensors for
higher context detection accuracy.

In this paper, we found that barometer and accelerometer
have complementary strengths and weaknesses: barometer is
good for IDLE and VEHICLE detection, but poor in WALK-
ING detection, while accelerometer is good for WALKING
detection, but poor in IDLE and certain VEHICLE detec-
tions. A simple fusion technique can combine the strengths



(a) Power profile of barometer-based context detection (b) Power profile of Google’s context detection

Figure 10: Power profile of Google and barometer algorithms

Table 15: Fusing barometer and Google algorithms

Baro Google Fusion
Idle 76% 76% 76%

Walking 54% 79% 88%
Vehicle 81% 31% 77%
Overall 69% 56% 81%

of both sensors, by first giving precedence to accelerometer
for WALKING, and then to barometer for other states.

Table 15 shows the accuracy using fusion of the barom-
eter and Google algorithms. The overall accuracy improves
drastically over using a single sensor. Fusion also fixes the
WALKING detection problem faced by barometer.

7 Discussion and Future Work
In this section, we discuss two issues pertaining to the use

of barometer for context-detection:
7.1 Sensor Batching

The main source of power consumption in current activity
detection algorithms is the need to keep a wake lock on the
main processor to process sensor data continuously. Hard-
ware implementations such as the M7 co-processor reduce
this power, but are inflexible. A new hardware feature has
been introduced in Nexus 5, called sensor batching, where
sensor data can be buffered while the processor sleeps, and
processed in a batch later when the processor wakes. This
provides a nice balance between power and software flexi-
bility. The number of readings that can be buffered is limited
by the sampling rate and the size of the data. The low sam-
pling rate of barometer (1 Hz) makes it excellent for sensor-
batching, compared to 3-axial accelerometer which requires
higher sampling rates and larger data. Barometer data can
be buffered for several minutes even when using small-size
buffers. With sensor batching, the barometer would become
truly ultra-low power. Unfortunately, we were unable to tap
into the battery of Nexus 5 for power measurements, and so
are unable to provide an evaluation of the effect of sensor
batching on the power consumption of barometer detection.

7.2 Combining Temperature with Pressure
One potential way to improve WALKING detection is the

use of temperature along with pressure. Barometer chips
contain embedded temperature sensors, so reading the tem-
perature comes at no extra cost. Air pressure and temperature
are co-related. When the phone is idle, a change in pressure
would be associated with a corresponding change in temper-
ature. While walking, this co-relation is disturbed since the
change in pressure gets additionally affected by the change
in altitude. This could act as an indicator for the WALKING
state. In our measurements of pressure and temperature in-
doors on the Galaxy S4 (which has an ambient temperature
sensor), this co-relation appeared to be correct. However,
when we performed measurements outdoors while idle, this
co-relation does not seem to hold, as seen in Figure 11. Ide-
ally, even when outdoors, when the user is idle, pressure and
temperature would show a co-relation. One reason this is
not the case is perhaps the slower reaction of the tempera-
ture sensor to change in temperature, or low resolution. Fur-
ther exploration of this idea using higher quality and higher
resolution sensors is left as future work.
7.3 Integration with FMS App

We are looking into integrating our algorithm into the
FMS App, to eliminate the ‘movement’ false positives of-
ten generated by accelerometer which trigger the high-power
location service. This can help reduce power consumption
since the location service will not run unnecessarily.

8 Conclusions
In our work, we demonstrate an alternative approach for

low-power transportation context detection using only the
barometer sensor, a relatively new sensor now present in an
increasing number of phones. Unlike accelerometer, the pre-
dominant sensor in use today, barometer is unaffected by
phone position and orientation, but instead depends only on
the overall terrain of the land. Using a low sampling rate of 1
Hz, and simple processing based on intuitive logic, we show
that barometer can be used for the detection of the states
IDLE, WALKING, and VEHICLE while consuming 32 mW
lower power than even the accelerometer, at the same time
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Figure 11: Variation of temperature and pressure out-
doors when IDLE

achieving comparable accuracy to Google’s Activity Recog-
nition algorithm and the FMS application. Barometer also
solves the problems of accelerometer in detecting the WAIT-
ING state, and certain vehicles like the subway. Finally, we
found that fusion of barometer and accelerometer gives the
best accuracy by combining the strengths of each sensor.
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