
Computer Communications 73 (2016) 56–65

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Dynamic framework for building highly-localized mobile web DTN

applications

Kartik Sankaran a,∗, Ananda Akkihebbal L. a, Mun Choon Chan a, Li-Shiuan Peh b

a School of Computing, National University of Singapore, Singapore
b Department of EECS, Massachusetts Institute of Technology, United States

a r t i c l e i n f o

Article history:

Available online 7 September 2015

Keywords:

Delay-Tolerant Networks

Smartphone

Web applications

Dynamic framework

Context-awareness

a b s t r a c t

Proximity-based mobile applications are increasing in popularity. Such apps engage users while in proximity

of places of interest (malls, bus stops, restaurants, theatres), but remain closed or unused after the user goes

away. Since the number of ‘places of interest’ is constantly growing and can be large, it is impractical to install

a large number of corresponding native applications on the phone when each app engages the user for only

a small period of time.

In this paper, we propose a dynamic framework for deploying highly-localized mobile web applications. Such

web applications are deployed locally to users in proximity, and can be opened in the browser. Communica-

tion in the web app is performed over the Delay-Tolerant Network of mobile users, removing the need of an

Internet connection. DTN protocols can be dynamically added or removed at run-time, allowing each appli-

cation to use a protocol best suited to its needs. After usage, the web application is closed either manually by

the user, or automatically when the user goes away from the place of interest.

To restrict deployment of web apps to only those users in a relevant context (e.g.: people walking nearby

a store), and to automatically switch off DTN protocols when user context changes, we have extended the

framework to be ‘context-aware’, using the low-power barometer sensor on the phone to detect when the

user is idle, walking, or in vehicle. Applications can specify which protocols to run in these user contexts, and

when to switch them off, reducing power consumption.

We have implemented the framework on Android. Our analysis of the framework show that the memory and

performance overhead incurred is small. Using this framework, we have written a simple DTN web applica-

tion for bus-stops to help the physically challenged. Using real-device measurements, we show that adding

context awareness to the framework can reduce power consumption by at least 53%.

© 2015 Elsevier B.V. All rights reserved.

p

w

F

a

i

i

e

f

i

w

1. Introduction

Proximity-based mobile applications have recently gained in-

creasing popularity. In these applications, users interact with other

users around them. Table 1 lists some of the popular proximity appli-

cations, along with the number of users who downloaded the appli-

cation, and their average rating out of five. Many of these have more

than 10 million downloads, and have high user ratings.

The rise of proximity applications has sparked an interest in scal-

able and energy-efficient device-to-device technologies such as LTE-

direct and Bluetooth LE beacons. These technologies are expanding
∗ Corresponding author. Tel.: +65 92249727.

E-mail addresses: kar.kbc@gmail.com (K. Sankaran), ananda@comp.nus.edu.sg (A.

Akkihebbal L.), chanmc@comp.nus.edu.sg (M.C. Chan), peh@csail.mit.edu (L.-S. Peh).

t

l

h

w

m

http://dx.doi.org/10.1016/j.comcom.2015.08.017

0140-3664/© 2015 Elsevier B.V. All rights reserved.
roximity applications to include not just interaction with people, but

ith physical places as well, such as stores, theatres, and restaurants.

or example, users can check for daily specials in nearby restaurants,

nd movie combo offers in nearby theatres.

Each place of interest is typically associated with its own ded-

cated application on the phone. Users need to install these apps

n order to use them. However, as the number of places of inter-

st grows, installing large number of apps quickly becomes waste-

ul and annoying to the user. To solve this problem, what is needed

s lightweight and convenient installation of proximity applications

hen the user is near the place of interest, in addition to good device-

o-device communication. When users go away, the apps should no

onger be active nor installed on the phone. This allows users to

ave highly-localized interactions, with apps engaging users only

hen necessary, perhaps even only for a brief period of a few
inutes.

http://dx.doi.org/10.1016/j.comcom.2015.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.08.017&domain=pdf
mailto:kar.kbc@gmail.com
mailto:ananda@comp.nus.edu.sg
mailto:chanmc@comp.nus.edu.sg
mailto:peh@csail.mit.edu
http://dx.doi.org/10.1016/j.comcom.2015.08.017

K. Sankaran et al. / Computer Communications 73 (2016) 56–65 57

Table 1

Examples of social-proximity applications on Android.

Application Description Downloads Rating out of 5

Foursquarea Find interesting places nearby, check-in for discounts 10,000,000+ 4.2

Badoob Chatting, dating, making friends with people nearby 10,000,000+ 4.5

Grouponc Finding local deals and discounts 10,000,000+ 4.6

Skoutd Discovering and meeting new people around 10,000,000+ 4.1

Circlese Finding people nearby with mutual interests 1,000,000+ 4.5

Sonarf Connect with friends and like-minded people nearby 1,000,000+ 4.1

GrabTaxig Finding and booking nearby cabs 100,000+ 4.1

a https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
b https://play.google.com/store/apps/details?id=com.badoo.mobile
c https://play.google.com/store/apps/details?id=com.groupon
d https://play.google.com/store/apps/details?id=com.skout.android
e https://play.google.com/store/apps/details?id=com.discovercircle10
f https://play.google.com/store/apps/details?id=me.sonar.android
g https://play.google.com/store/apps/details?id=com.grabtaxi.passenger

t

d

b

T

e

u

I

u

l

t

U

p

I

T

p

a

t

a

c

n

c

a

f

p

i

b

p

t

p

i

o

s

p

i

n

i

O

m

w

b

r

t

w

i

c

d

e

l

t

r

w

r

d

f

p

t

2

B

o

2

T

q

c

t

c

t

D

2

D

o

p

2

u

w

One possible solution is to deploy native mobile apps ‘on-the-fly’

o users who are in proximity to places of interest over device-to-

evice communication link. This eliminates the need to install apps

eforehand and need for Internet connection to the server. Delay-

olerant Networks (DTN) [1] are best suited to deploy apps since they

xploit device-to-device technologies, working in the face of high

ser mobility. Unlike client-server solutions, DTN does not require an

nternet connection to a central server, nor does it need access to a

ser’s location, being inherently locality-specific.

Installation of native apps ‘on-the-fly’ is however still not

ightweight. More importantly, users are wary of giving permission

o unknown apps to access their phone’s storage and private details.

se of web applications, as opposed to native applications, solves this

roblem as web applications run in the browser’s security sandbox.

nstallation is lightweight since it only involves opening a web page.

he browser informs the user when a web app attempts to access

rivate details like location, which can be denied. Users are willing to

llow such interactions since it is more akin to browsing a website.

While web apps do not have the full freedom of native applica-

ions, they are still quite powerful, having access to location, camera,

nd even the phone’s sensors. However, they are currently limited to

ommunication over sockets. To enable their full potential, web apps

eed access to communication over the DTN, thus making use of up-

oming device-to-device technologies.

We propose and implement a dynamic framework for developing

nd deploying highly-localized mobile web DTN applications [2]. This

ramework deploys web apps to users near the places of interest. The

hone notifies the user of received web apps, and if found interest-

ng, can be opened in the mobile browser. After use, the web app can

e closed either manually, or automatically when the user leaves the

lace of interest.

In this journal paper, we extend the framework developed in [2]

o be ‘context-aware’, using the low-power barometer sensor on the

hone to detect when the user is IDLE, WALKING, or in a VEHICLE [3].

Context-awareness reduces power consumption of the framework

n the following two ways: First, it restricts deployment of web apps to

nly those users in a relevant context (e.g.: users walking nearby a

tore). Second, it enables automatic switching off of plugged-in DTN

rotocols when the user context changes (e.g.: when the user gets

nto a bus). Consequently, context-awareness drastically reduces un-

ecessary communication between phones, saving power.

We have implemented our framework on Android, and ported

t to desktop. It supports both native and web mobile applications.

ur analysis of the framework shows that the memory and perfor-

ance overhead incurred is small. Using real-device measurements,

e show that adding context awareness reduces power consumption

y at least 53%. In addition, we show via trace-based simulation of

eal-world public bus transport data that unnecessary communica-

ion between phones in a bus is reduced by 87%.
As an example application, we have implemented a simple DTN

eb app for bus stops to help the physically challenged. The app

nforms users when buses are arriving at the pick-up point, and is

ustomized to physically challenged users to help them inform bus

rivers that they would like to board.

By supporting both Android and web applications, the framework

xposes DTN to the large community of developers, making it more

ikely for DTN applications to be developed for general use. Since pro-

ocols are plugged in dynamically, it is easy to modify to adapt to cur-

ent advances in DTN protocols and device-to-device communication

ithout re-compilation of the framework.

The rest of the paper is organized as follows: Section 2 discusses

elated work and provides a motivation for our framework. Section 3

escribes the design of the framework, while Section 4 extends the

ramework to be context-aware. Section 5 describes our sample ap-

lication. Section 6 evaluates the framework. Section 7 discusses fu-

ure work, while Section 8 concludes the paper.

. Related work and motivation

In this section, we discuss related work under different categories.

y describing their limitations, we also provide motivation for devel-

pment of a dynamic framework.

.1. HTTP-over-DTN browsing

Efforts have been made to use DTN for web browsing [11–14].

hese papers concentrate on techniques for serving browsing re-

uests over DTN, such as bundling of HTTP requests, pre-fetching, and

aching. The underlying DTN is hidden from webpages.

Our framework focuses on deploying DTN web apps, as opposed

o web pages. Web apps are similar to mobile apps: they are self-

ontained, i.e. they contain all the scripts and web pages required for

he app to work. Also, DTN web apps are fully aware of the underlying

TN, using the DTN API exposed by our framework.

.2. Web-based DTN apps

Web apps such as Facebook and blogging have been written to use

TN [15,16]. While these apps are ‘DTN-aware’, the work concentrates

n how the apps work using DTN, and does not support localized de-

loyment of web apps and protocols on-the-fly.

.3. PhoneGap

PhoneGap is a framework for creating cross-platform mobile apps

sing web technologies. Each app runs in the PhoneGap container,

hich is essentially a ‘super-browser’: apps can access phone details

https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
https://play.google.com/store/apps/details?id=com.badoo.mobile
https://play.google.com/store/apps/details?id=com.groupon
https://play.google.com/store/apps/details?id=com.skout.android
https://play.google.com/store/apps/details?id=com.discovercircle10
https://play.google.com/store/apps/details?id=me.sonar.android
https://play.google.com/store/apps/details?id=com.grabtaxi.passenger

58 K. Sankaran et al. / Computer Communications 73 (2016) 56–65

Table 2

Existing DTN frameworks.

Framework API exposed to developers Brief description

Haggle [4] Publish-Subscribe API (attribute-based) Uses a search-based data-centric protocol

Mist [5] Publish-Subscribe API (topic-based) Uses a reliable broadcast with fragmentation

MaDMAN [6] Sockets API Switches between TCP/IP and DTN protocol stack

ubiSOAP [7] Service-Oriented API Floods WSDL files and SOAP messages

MobiClique [8] Social-Networking API Built on top of Haggle

DoDWAN [9] Publish-Subscribe API (attribute-based) Floods WSDL files and SOAP messages (with attributes)

Bytewalla [10] Bundle protocol API First implementation of the Bundle protocol on Android

r

D

t

3

i

t

t

m

i

v

t

m

o

c

c

c

Fig. 1. Design of the framework.
(such as user contacts) via PhoneGap, normally not accessible to reg-

ular web apps. PhoneGap apps, while written in Javascript, are in-

stalled like native apps. The advantage is that several code versions

are not required for different mobile platforms.

However, since the app must be installed like a native applica-

tion, installation of PhoneGap apps do not meet the lightweight and

convenience requirements of localized proximity applications. In ad-

dition, they lack access to DTN APIs.

2.4. QR codes

QR codes are useful to direct mobile users to web pages online by

scanning codes using their camera. While these codes are convenient

to post near places of interest, they require users to look for and man-

ually scan the codes. Discovering web apps is not ‘automatic’ like in

our framework.

2.5. DTN middleware for mobile

Several middleware have been written on mobile for development

of DTN applications. Table 2 provides a list of existing middleware,

along with the type of API exposed, and a brief description of each.

To the best of our knowledge, these middleware do not expose their

API to web applications (with an exception of Bytewalla, discussed

below), limiting their use to native mobile applications only.

In addition, unlike our framework, these middleware are static,

i.e. the underlying protocols are fixed at compile-time and shared by

multiple applications. It is not possible to load and unload protocols

on-the-fly, a feature required by ‘use-and-discard’ proximity web ap-

plications.

2.6. Service-adaptation middleware

The work in [17] proposes a middleware that acts as a bridge be-

tween DTN apps written in different languages and DTN bundle ser-

vice daemons running on different platforms. Bytewalla is the dae-

mon running on Android, while PCs run the DTN2 service daemon.

This middleware enables web applications to access DTN. However,

like the web-based apps discussed earlier, it does not support local-

ized deployment of web apps and protocols on-the-fly.

2.7. Dynamix

Dynamic frameworks are quite popular in the context-aware com-

puting domain. In particular, a framework called Dynamix [18] pro-

vides context-awareness to web applications, by means of context

components loaded at run-time. Architecturally, this framework is

closest to our framework.

Although architecturally similar, Dynamix focuses on context

awareness: its APIs are oriented around receiving ‘context events’. In

contrast, our framework’s (DTN) APIs are communication-oriented.

Dynamix’s context-aware components are self-contained, while our

protocol components are linked in the form of protocol stacks for

each application.
To summarize this section, existing work have limitations with

espect to the requirements of lightweight and convenient localized

TN web applications. Our framework has been designed to address

hese limitations and make such dynamic DTN applications possible.

. Design and implementation

In this section, we give a high-level overview of the design and

mplementation of our framework. As shown in Fig. 1, it consists of

hree parts: the framework itself, the deployment application, and

he Android/Web applications.

The framework consists of APIs, and protocol components imple-

enting these APIs, all loaded at run-time. To support dynamic load-

ng of code, it uses Apache Felix. It runs as a background (bound) ser-

ice in Android.

We have written a simple Forwarding Layer API for applica-

ions to access routing protocols. This API supports multi-hop

essage transfers over the DTN. We also have a Link Layer API for

ne-hop communication, which supports neighbour discovery and

onnection-oriented communication, implemented by link layer

omponents (Bluetooth, WiFi-direct), and used by forwarding layer

omponents. Dynamically loaded APIs are advantageous since OSGi

K. Sankaran et al. / Computer Communications 73 (2016) 56–65 59

Table 3

Important methods of the Forwarding Layer API.

Method Description

getDescriptor(appName, userName) Gets a descriptor for this (appName, userName) endpoint

sendMessage(descriptor, message, destination) Sends (maybe broadcasts) a message over multiple-hops

addMessageListener(descriptor, listener) Adds a listener for received multi-hop messages

Table 4

Important methods of the Link Layer API.

Method Description

getDescriptor(upperLayerID) Gets a descriptor for this Upper layer ID (similar to EtherType)

addNeighbourListener(listener) Adds a listener for discovered one-hop neighbours

openConnection(descriptor, neighbour) Opens a connection to neighbour(s), may be one-to-many

addConnectionListener(descriptor, listener) Adds a listener for incoming connections

sendMessage(connection, message) Sends (maybe broadcasts) a message on this connection

receiveMessage(connection) Blocking receive for a message on this connection

DTN Application

Encryption

Forwarding Protocol

Link Layer Protocol

DTN Application

Forwarding Protocol

Forwarding Protocol Forwarding Protocol

Link Layer Protocol

DTN Application

Forwarding Protocol

Link Layer Protocol Link Layer Protocol

DTN Application

Forwarding Protocol

Link Layer Protocol

Fig. 2. Some of the possible ways to create a protocol stack.

a

b

T

c

e

s

c

e

p

u

fi

fi

t

n

A

t

t

T

c

d
t

d

a

i

h

d

a

t

r

s

3

D
c

e

D

r

t

a

p

d

r

1 en.wikipedia.org/wiki/Cross-origin_resource_sharing
llows multiple incompatible versions of the API to co-exist without

reaking applications.

For clarity, a subset of the methods of these two APIs is listed in

ables 3 and 4. They support the basic send and receive primitives for

ommunication. Although these APIs are low-level, they are powerful

nough for developers to write applications.

Although Fig. 1 shows only two protocols and a single protocol

tack, the framework supports multiple protocol stacks, with proto-

ols dependencies arranged in a directed acyclic graph (Fig. 2). For

xample, a forwarding layer can use multiple link layers, and a com-

onent can be added for encryption. Every application can load and

se its own protocols, or even share protocol stacks.

Protocol components are given a user-readable name in their con-

guration files. Applications can request for protocols with the speci-

ed config name. Changing protocols involves loading a different pro-

ocol and giving it the same config name.

When the middleware is first launched, it creates two folders

amed install and deploy in the phone’s sdcard. Protocol and

PIs are plugged into the middleware by placing their jar files into

he install folder (To deploy them to all phones, rather than just

he current phone, the jar files are placed into the deploy folder).

o unload them, the jar files are removed. The install folder is

hecked every two seconds by an OSGi utility called FileInstall (The

eploy folder is checked every two seconds by the deployment

ool).

API components are broken into proxy and stub parts, in accor-

ance with Android’s inter-process communication (AIDL). The proxy

nd stub parts contain logic that shields upper layers from change
n underlying protocols at run-time by saving state information, and

ides underlying AIDL.

The deployment app is a ‘special’ DTN application that is used to

eploy web apps, protocols components (jar files), and even native

pplications placed inside the deploy folder (it also supports collec-

ion of logs over DTN for debugging purposes). The user is notified of

eceived web apps, which are opened in the browser, while protocol

tacks are loaded into the framework.

.1. Web app support

Web apps are provided with two Javascript libraries

tnMessage.js and FwdLayerAPI.js. The first contains

onvenience methods for creating DTN messages, while the second

xposes the Forwarding layer API.

The framework runs a local embedded web server which receives

TN API calls from web apps via AJAX, and translates them into cor-

esponding Java calls. To overcome the same-origin policy restriction,

he server supports Cross-origin resource sharing1. To enable web

pps to receive DTN messages, the Javascript code uses AJAX long

olling.

The framework runs both on Android and PCs. A subset of the An-

roid libraries were implemented on PC so that it can compile and

un largely without modification. The framework currently has full

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

60 K. Sankaran et al. / Computer Communications 73 (2016) 56–65

Fig. 3. Variation in altitude measured by barometer in different user states.

4

I

i

c

t

4

u

s

a

i

c

m

e

e

t

t

t

c

e

u

n

h

s

c

p

t

e

t

p

o

2 Barometer can be found in Galaxy S3/4/5/6, Nexus 3/4/5/6, iPhone 6, and many

more
support for native Android applications, while web app support is in

the prototype stage.

4. Adding context-awareness

4.1. Motivation for context-awareness

In this journal paper, we extend the framework to solve two prac-

tical problems faced during on-the-go deployment of web apps. The

first problem is that applications are deployed to everyone in prox-

imity of a place of interest. Not only does this waste power, but this

unnecessarily disturbs users who may not be a suitable target of the

application. For example, a shop that wants to advertise an ongoing

special sale using a web app would prefer to deploy the app to users

walking nearby, but not to users travelling in vehicles on a nearby

road.

The second problem is that once users finish interacting with

the web application deployed to them, they may forget to close the

browser tab (for example by minimizing the browser and switch-

ing to another mobile app), leaving the DTN protocols running in the

background even when the user goes away from the place of interest,

wasting power.

To solve these two problems, we extend the framework by adding

context-awareness (specifically, awareness of the user states IDLE,

WALKING, and VEHICLE), determined using the low-power barome-

ter sensor on the phone. Context-awareness enables the framework

to:

1. Restrict deployment to relevant users: Web apps are deployed

to only those users in a relevant context. For example, users who

have been idle in the same place for a long time, or users travelling

in vehicles on nearby roads should not receive web apps.

2. Automatically switch off DTN protocols: Once the user goes

away from a place of interest, indicated by a change in context (for

example leaving the mall by car/bus), the DTN protocols deployed

with the application are switched off automatically.

By restricting deployment and switching off protocols, power con-

sumption of the framework is significantly reduced (see the evalua-

tion in Section 6).
.2. Implementation of context-awareness

We have implemented a low-power context detection of the states

DLE, WALKING and VEHICLE using the barometer sensor on the phone

n an earlier work [3]. In this section, we give an overview of how this

ontext detection works, and then describe how it is integrated with

he framework.

.2.1. Context detection using barometer

The three user states IDLE, WALKING, and VEHICLE can be detected

sing the barometer sensor on the phone. This sensor measures the

urrounding air pressure, which can then be translated into height

bove sea level (altitude). It operates at low-power, and is increas-

ngly available on smartphones today2. It is sensitive to even small

hanges in height, capable of measuring height changes of less than a

etre.

We have implemented barometer-based context detection in an

arlier work [3]. Here we describe the intuition behind using barom-

ter for context detection, and then describe how it is integrated with

he framework to save power.

Fig. 3 shows an example of the variation in altitude measured by

he smartphone’s barometer in different user states (Note that the

erm ‘Lazy movement’ in the figure refers to the user state IDLE). As

an be observed in this example, users in vehicles typically experi-

nce rapid changes in height, since roads are not perfectly flat, and

sually follow the terrain of the land. They also experience higher

umber of peaks and valleys in the barometer signal. On the other

and, users who are walking, due to their lower speed, experience

maller changes in height. Users who are idle experience almost no

hange in height.

These differing characteristics of height change and number of

eaks and valleys in the height signal can be used to distinguish be-

ween the states IDLE, WALKING, and VEHICLE using only the barom-

ter sensor on the phone at low-power.

Using barometer for context detection is advantageous over

raditionally-used sensors like accelerometer since, by measuring air

ressure, it is inherently phone position (hand, bag, or pocket) and

rientation-independent, and is unaffected by hand movement. Thus,

K. Sankaran et al. / Computer Communications 73 (2016) 56–65 61

i

a

c

I

d

4

t

p

u

U

l

i

i

n

U

d

w

t

t

A

t

s

b

5

t

s

a

v

t

s

c

d

i

s

a

m

m

b

w

t

a

b

m

d

c

i

b

c

w

w

o

t

c

(a) For bus drivers (b) For Wheelchair people

Fig. 4. Bus stop web app.

d

h

w

c

f

t

m

w

c

d

t

5

s

s

i

i

m

g

o

c

f

v

p

f

v

u

a

b

t

a

m

e

i

b

s

f

3 Demo video: https://www.youtube.com/watch?v=DAm9gAY_uAo
4 Website: http://www.comp.nus.edu.sg/∼kartiks/nusdtn/
t avoids the confusion cases typically faced by approaches utilizing

ccelerometer when an idle user moves the phone.

This section only described the intuition behind barometer-based

ontext detection. For additional details, we refer the reader to [3].

n the following section, we describe how we integrate this context

etection into the framework to save power.

.2.2. Integration into the framework

The context detection system developed in [3] is integrated into

he framework to smartly manage deployment and protocols to save

ower. Knowledge of the user states IDLE, WALKING, and VEHICLE is

sed in the following two ways.

First, based on the user state, the deployment app is switched off.

sers who are idle for a long time in the same place, and users travel-

ing in vehicles do not receive on-the-go web apps since deployment

s switched off. This saves significant power since people often stay

ndoors (home/office) for extended periods of time, and there is no

eed to unnecessarily run the deployment app during those periods.

sers in vehicles that rapidly pass by places of interest are also not

isturbed by deployed apps.

Second, protocols deployed along with web apps are turned off

hen the user changes state. For example, if the user forgets to close

he web app, and goes away from the place of interest by bus/car,

he protocols are turned off to prevent unnecessary communication.

pplications can control in which states their protocols should be

urned off by modifying their configuration files.

Section 5.1 describes the usefulness of context-awareness with re-

pect to our sample application. Section 6 evaluates the power saved

y adding context-awareness to the framework.

. Sample DTN web application

To demonstrate the usefulness of localized web apps, and illus-

rate how these apps work from the user’s perspective, we wrote a

imple app for bus stops and terminals to help the physically dis-

bled as well as regular commuters board buses. This app is a web

ersion of a DTN Android application written by students of the Na-

ional University of Singapore (the framework has been used for two

emesters by student groups in the Wireless and Sensor Networks

ourse to build DTN apps for project work).

In bus terminals, commuters would like to know when the bus

river has been instructed to go to the pick-up point. Rather than

nstall the LTA (Land Transport Authority) application from the play

tore beforehand, they can use the web app for a more localized

nd brief interaction. Physically disabled, such as wheelchair com-

uters, require assistance to board buses at bus stops and ter-

inals. They need to inform drivers in advance so that they can

oard first, using a customized version of the app to do this. Our

eb app uses DTN to enable bus drivers to announce their allot-

ed pick up time, regular commuters to receive this information,

nd wheelchair commuters to request drivers to assist them while

oarding.

Since the framework has been ported to desktop, and supports

ultiple applications and users on a single device, the web app was

eveloped locally before deploying it to mobile devices. This is espe-

ially important since it is easier to debug code using tools available

n desktop browsers.

A device (laptop/mobile) located at the bus stop (alternatively can

e placed on buses) deploys the web app wirelessly over the DTN to

ommuters nearby. Users carrying mobile devices running the frame-

ork receive the deployed app on-the-fly. In our prototype, received

eb apps are displayed in the notification bar. If interested, users can

pen the app in their browser. The user can choose a customized in-

erface: for example, wheelchair people can choose the web app spe-

ialized to help them.
The app for regular users only displays arrival information sent by

rivers (Bus driver’s interface is shown in Fig. 4a). Wheelchair people

ave the additional capability to inform drivers in advance that they

ould like to board, as shown in Fig. 4b. Customized DTN protocols

an be optionally bundled with the web app, and plugged into the

ramework at run-time. After usage (i.e. the commuter has boarded),

he app can be simply closed in the browser. The framework auto-

atically releases resources used by the app.

Our sample application demonstrates the advantages of localized

eb apps: localized interactions, lightweight installation, and se-

ure execution in the browser. Most importantly, these apps exploit

evice-to-device communication. In the future, our app will be ex-

ended to use swipe gestures and audio for the blind.

.1. Use of context-awareness

Our sample application targets users who are standing near a bus-

top. However, without context-awareness, the app is also unneces-

arily deployed to users travelling in vehicles on the road, or to users

n nearby home and office buildings.

Furthermore, once the user finishes using the application and gets

nto the bus, he/she might forget to close the browser tab (by mini-

izing the browser), leaving the DTN protocols running in the back-

round. As the bus travels from stop to stop and passengers get in and

ut, the running protocols unnecessarily waste power by communi-

ating with newly boarded users.

These problems are reduced using the context-awareness of the

ramework. By turning off deployment in phones of users who are in

ehicles, or who have been idle for a long period of time in the same

lace, deployment to these users are avoided. In addition, by speci-

ying that the protocols must be switched off when the user is in a

ehicle, the framework automatically switches off protocols once the

ser has boarded the bus. This prevents unrequired communication,

nd consequently saves power. Section 6 evaluates the power saved

y adding context-awareness to the framework.

Another example of the use of context-awareness is the applica-

ion vWant3 developed by a student group using the framework to

utomatically pull music preferences of users sitting around a multi-

edia screen, and play relevant music based on majority crowd pref-

rence. Their application determines whether the user is idle or walk-

ng, and does not pull music preferences from those who are walking.

Table 5 gives a summary of the Android applications developed

y students using our framework. More detailed description of our

tudents’ apps, documentation, APIs, and tutorials are available at the

ramework’s website4.

https://www.youtube.com/watch?v=DAm9gAY_uAo
http://www.comp.nus.edu.sg/~kartiks/nusdtn/

62 K. Sankaran et al. / Computer Communications 73 (2016) 56–65

Table 5

Students’ applications using the framework (note that these are Android, not web apps).

Application Description

MaxTix Last-minute movie ticket sales, re-selling, and ticket transfer

TunePulze Sharing fitness information and songs during workouts

LiftMeUp Rapid response and aid to elderly people who have fallen down

DeleCab Collaboration between users to share the same cab

ChallengeMe Interactive competitions between people in extreme sports

DisabledPersonTransport Notifying and helping physically challenged people to board buses

vWant Multimedia streaming based on crowd-preference

MyRadius Share and discover information about local events and special sales

SoChat Share ideas, files, ask questions to students around

WhereToFirst Collects and displays crowd/queue information of nearby shops

Fig. 5. Power of server (LTE) v/s device-to-device (WiFi).

t

f

6

r

e

i

f

i

6

o

s

p

t

c

f

6. Evaluation

In this section, we first compare the use of centralized server

versus device-to-device communication with respect to power us-

age and latency experienced. We then evaluate the performance and

memory overhead of our framework. Finally, we analyse the power

saved by adding context-awareness to the framework.

6.1. Server versus device-to-device

Existing proximity applications have to use a central server to

calculate whether a user is close to a place of interest. The phone

uploads its location to the server, which informs it when it is nearby

interesting places. Uploading over the cellular network is costly in

terms of power. Use of device-to-device technologies can reduce

power consumed, but requires periodic ‘device discovery’. In this

section, using power measurements on the Monsoon power meter,

we quantify and compare the power usage of server-based versus

device-to-device technologies, and show that there is indeed a power

saving in spite of the device discovery process.

The power consumption depends on the frequency of location up-

dates (for server-based solution) and on frequency of device discov-

ery (for device-to-device technologies). The lower the frequency, the

lower the power consumed, but at the expense of latency. We assume

the device at the ‘place of interest’ (e.g.: bus stop) is powered exter-

nally, and only focus on the user’s phone’s power usage here.

We consider the case where location updates to the server occur

over the LTE network, while the device-to-device technology used

is WiFi-direct. Using the Monsoon power meter, we measured the

power profile for sending a small (ping) packet to a server on a Galaxy

S3 phone, as well as the power profile for device scanning. Table 6

lists the power values measured. Unlike WiFi-direct, LTE suffers from

a long tail (more than 12 s) after the packet has been sent.

Based on these measurements, we calculated the power con-

sumption at different frequency of location updates and scans, shown

in Fig. 5. For the same latency, server-based approaches would con-

sume higher power. For example, at a (reasonable) 20 s worst-case

latency, the power saving of using device-to-device technologies is

86%. Thus, use of device-to-device communication can benefit future

proximity applications by being more power-efficient. Although the

power to transfer web apps is not included in Fig. 5, we expect that
Table 6

Monsoon power meter measurements.

Operation Power (mW)

CPU (asleep) 25

CPU (awake) 85

LTE (active) 2000

LTE (tail) 490

WiFi (scan) 300

(

d

o

w

c

i

w

p

c

v

he higher bandwidth between devices would make such transfers

aster and lower power than LTE as well.

.2. Deployment latency

The latency between a device arriving at a place of interest and

eceiving the deployed web app is important to users. As explained

arlier, this is a function of the discovery interval used (set to 10 s

n our deployment tool). We measured the deployment latency and

ound it to be 6.4 s on average, which is reasonable. This can be mod-

fied to tradeoff savings in power (Fig. 5).

.3. Performance overhead

In DTN, devices exchange information when they come into range

f one another. It is critical that data is transferred as quickly as pos-

ible during the limited contact duration time. Here we measure the

erformance overhead introduced by the framework during the data

ransfer.

Two aspects of the framework cause overhead during communi-

ation: the Inter-process communication (IPC) where data is copied

rom the DTN application to the framework, and the API Proxy/Stub

see Fig. 1). We expect the Proxy/Stub overhead to be independent of

ata size, since it does not involve any data copying. We expect IPC

verhead to vary linearly with data size. Note that IPC occurs only

hen data is initially passed from the DTN app to the routing proto-

ol. After the initial copy, it is buffered in the framework for forward-

ng to other devices opportunistically.

To reduce IPC overhead for large data (audio, pictures), the frame-

ork allows data to be transferred from the app via files in the

hone’s storage. This removes the need for data copy, and is more

onvenient for the app. Only (optional) ‘metadata’ needs to be copied

ia IPC. For example, a mall application advertising a special sale

K. Sankaran et al. / Computer Communications 73 (2016) 56–65 63

Fig. 6. Overhead during file transfer.

w

l

p

E

p

T

o

m

t

I

i

6

o

p

o

m

A

s

e

t

m

s

o

6

f

r

c

m

n

T

Table 8

Memory overhead.

Part of the framework Memory

API proxy (application-side) 1.1 MB

Framework service (nothing plugged in) 8.9 MB

Framework service 9.1 MB

(2 APIs + 2 protocols, no messages)

Table 9

Accuracy of barometer algorithm versus Google (Accl) and FMS

(GPS+Accl) algorithms.

Baro(%) FMS(%) Google(%) Fusion(%)

Idle 76 33 76 76

Walking 54 46 79 88

Vehicle 81 90 31 77

Overall 69 68 56 81

i

t

i

6

e

t

a

o

s

A

S

i

o

b

o

t

l

G

t

i

i

w

r

w

s

m

c

t

6

t

ould transfer product photos via files, while smaller textual data

ike name and price would be transferred via IPC.

Fig. 6 shows the overhead involved for file transfer between two

hones running the framework, using TCP over a 802.11b interface.

ach data point is an average of 30 trials. The overhead is small com-

ared to the transfer time, especially for moderate to large file sizes.

able 7 shows a breakdown of the overhead. As expected, Proxy/Stub

verhead is independent of data size. IPC overhead is due to the large

etadata size (32 kB) used in the experiment, but is independent of

he file size. Overhead is 6% and lower for moderate to large file sizes.

f IPC is not involved (i.e. data is already buffered), then the overhead

s even lower.

.4. Memory overhead

Here we measure the extra memory used by the framework. In

ur implementation, the API Proxy class occupies memory in the ap-

lication memory space. The framework itself runs as a service, and

ccupies memory separately from the application. Table 8 shows the

emory overhead, evaluated using the Eclipse Memory Analyser.

Android imposes a limit on heap, which varies with OS version.

ssuming a 32 MB limit, this leaves 23 MB for buffering. If each mes-

age is 1 MB, we can buffer 20 messages, which is too few. How-

ver, bulk of data is in the form of pictures/audio stored as files on

he sdcard, and not in heap. The heap contains only the message’s

etadata. If metadata is 32 kB, the phone can buffer about 700 mes-

ages. As newer phones have larger RAM, we do not expect the 9 MB

verhead to be significant.

.5. Evaluation of context-awareness

In this section, we evaluate the context-awareness added to the

ramework, in the following ways: First, we present results of accu-

acy of context detection on 47 h. of real-world transportation traces

ollected from 13 volunteers in 3 countries. Second, using real-device

easurements, we analyse the power saved by adding context aware-

ess to the framework to restrict deployment and turn off protocols.

hird, using real-world bus transport data, we estimate the reduction
Table 7

Breakdown of framework overhead during file transfer (time

File size Metadata size Proxy IPC Stub

256 kB 32 kB 5.66 81.03 8.40

512 kB 32 kB 8.93 25.03 8.20

1 MB 32 kB 6.53 76.09 6.75

2 MB 32 kB 7.32 25.04 36.18

4 MB 32 kB 13.47 25.67 8.66
n number of users involved in communication by switching off pro-

ocols. Lastly, we evaluate the latency of context detection and discuss

ts impact.

.5.1. Accuracy of context detection

We have evaluated our barometer-based context detection in our

arlier work [3] using 47 h of transportation traces collected during

he daily commute of 13 volunteers in 3 countries (Singapore, Boston,

nd China). Here we present a summary of the results of accuracy of

ur approach.

We have compared the accuracy of our context detection of the

tates IDLE, WALKING, and VEHICLE to two other systems: Google’s

ctivity Recognition (which uses accelerometer), and Future Mobility

urvey (FMS - a travel survey application deployed to over 1000 users

n Singapore and Boston which uses both GPS and accelerometer).

Table 9 compares the accuracy of all three approaches. It can be

bserved that FMS has good vehicle detection due to its use of GPS,

ut has poor walking and idle detection due to its low sampling rate

f accelerometer (2 Hz). The Google algorithm has good walking de-

ection, but poor vehicle detection, especially on ‘smooth’ vehicles

ike subways and trains where engine vibrations are minimal. The

oogle algorithm’s idle detection is good if the phone is still (as was

he case in these traces), but has several confusion cases if the phone

s moved with the hand [3].

Our barometer algorithm has good idle and vehicle detection, and

s resilient to hand movement unlike Google. It also works in vehicles

here engine vibrations are minimal. Walking detection is poor on

oads with small slope, but can be fixed by fusing with Google’s better

alking detection or by using low-power step detection chips [3], as

hown in Table 9. The fusion algorithm has 81% overall accuracy.

The good idle and vehicle detection of our barometer algorithm

akes it suitable for restricting deployment and switching off proto-

ols. For additional results and evaluation of our algorithm, we refer

he reader to our earlier work [3].

.5.2. Power saved using context awareness

As explained previously in Section 4, we add context-awareness

o save power by restricting deployment and switching off protocols,
is in millisecs).

Transfer time Overhead% Overhead% (no IPC)

581.12 16.36 2.42

752.50 5.60 2.28

1464.98 6.10 0.91

2137.29 3.21 2.04

4309.97 1.11 0.51

64 K. Sankaran et al. / Computer Communications 73 (2016) 56–65

Table 10

Comparison of power consumption of framework using context awareness versus without context

awareness.

Energy (mJ) Duration (s) Power (mW)

Without context awareness (no traffic) [Baseline 1] 84620 1800.42 47

Without context awareness (with traffic) [Baseline 2] 136833 1800.43 76

With added context awareness (with traffic) 39616 1800.72 22

Fig. 7. CDF of number of users on a bus with protocols still running.

6

r

b

a

w

w

b

l

b

p

b

w

c

w

w

o

t

s

p

u

e

c

b

u

p

S

F

s

b

w

i

a

d

reducing unnecessary phone-to-phone communication. This is

particularly significant when users are idle in the same place for

extended periods, such as in home or office, and phones should not

be running the deployment app and application protocols. How-

ever, performing context detection all the time adds to the power

consumption of the system.

In this section, using real-device measurements, we evaluate the

additional power consumption overhead of running a framework

with context detection against a framework running without context

awareness, and calculate the energy savings.

Majority of the power consumption in the framework running

without context awareness is due to neighbour discovery and phone-

to-phone communication. Since the amount of communication in-

volved (and hence the power saving of context awareness) depends

on the traffic generated by the mobile web application, we mea-

sure the power consumption in two cases when the framework runs

without context-awareness: without any communication traffic (only

neighbour discovery runs every minute), and with communication

traffic (each device sends a 10 kB message every 2 min), which act as

two baselines for comparison.

In this experiment, we use 5 Android phones (1 Galaxy S4, 3

Galaxy S3, and 1 Nexus 4) deployed in different locations in a room,

with the Galaxy S4 phone connected to the Monsoon power meter.

The phones perform neighbour discovery and phone-to-phone com-

munication using Bluetooth LE, while running the framework and

a traffic generating application. Other subsystems, including screen

and WiFi, are turned off during the experiment. Neighbour discovery

is performed once every minute, and in the case where traffic is gen-

erated, each device sends a 10 kB message to all other phones every

2 min. Note that using additional phones or higher traffic would only

increase the power consumption of the baselines.

We measure the average power consumption over 30 min for each

of the following three cases:

1. Framework running without context awareness (no traffic) [Base-

line 1]: Since no traffic is generated, we expect majority of the

power consumption to be from neighbour discovery at the link

layer protocol.

2. Framework running without context awareness (with traffic)

[Baseline 2]: Since traffic is generated by the application, we ex-

pect a larger power consumption due to phone-to-phone commu-

nication in addition to neighbour discovery.

3. Framework with added context awareness (with traffic): We ex-

pect the context detection to report that the user is idle, and pro-

tocols and deployment to be switched off automatically. So, the

power consumption is expected to be largely due to the overhead

of context detection.

Table 10 lists the power consumption from measurements on the

power meter for the three cases above (excluding the CPU base power

of 95 mW).

From the power measurements, we can see that by using context

awareness, we save 53% power of the first baseline, and 71% power

of the second baseline running without context awareness. Thus, by

using context, we achieve significant savings in the power consump-

tion by switching protocols and deployment off, especially important

when the user is at home or office for several hours.
.5.3. Reducing unnecessary communication

While the previous section evaluated the power savings using

eal-device measurements, in this section we evaluate using trace-

ased simulation of real world bus transport data how context-

wareness reduces unnecessary communication between phones

ith respect to our sample application, which is deployed to users

aiting at a bus-stop.

Once users have finished interacting with the application, they

oard the bus. However, users may forget to close the application,

eaving it running the background while they are in the bus. As the

us travels from stop to stop, and other users get in and out, the

rotocols unnecessarily waste power by communicating with newly

oarded users. If the bus is crowded, this can lead to a large power

astage. However, by automatically switching off protocols using

ontext-awareness, this problem can be avoided.

To analyse the impact of using context-awareness in the real

orld, we have written a trace-based simulator using a day of real-

orld transport data from public buses in Singapore, containing data

f over 1,000,000 users, and over 2000 buses. The transport data con-

ains the timestamped information of when buses arrive at every bus-

top, and information of users getting in and out (using their trans-

ort ezlink card). The simulator uses this data to keep track of which

sers are present in what buses, and how crowded the buses are at

ach stop.

Fig. 7 shows the CDF of the number of users in a bus with proto-

ols unnecessarily still running without context-awareness when the

us arrives at a bus-stop. Without switching off protocols, these users

nnecessarily communicate with other newly boarded users, wasting

ower.

Assuming that context-detection kicks in with some delay (see

ection 6.5.4), protocols are switched off once the bus starts moving.

ig. 7 shows the CDF of number of users on the bus with protocols still

witched on after using context-awareness. We find that the num-

er of such ‘active’ users is drastically reduced compared to the case

ithout context-awareness. On an average, there is an 87% reduction

n number of users involved in unnecessary communication.

Thus, we can see that in a real-world bus system, context-

wareness and automatically switching off protocols drastically re-

uces the unnecessary communication between users in a bus. Since

K. Sankaran et al. / Computer Communications 73 (2016) 56–65 65

t

c

c

6

b

t

p

r

d

s

t

l

a

r

t

t

t

w

b

f

7

7

i

t

7

t

t

t

8

m

d

o

t

t

p

t

t

r

c

t

w

A

s

R

R

R

[

[

[

[

[

[

[

he simulation does not consider users walking outside the bus, the

ommunication saving is expected to be even larger in the real-world

ompared to simulation.

.5.4. Latency of context-detection

While context-awareness can reduce unwanted communication

y switching off protocols, the drawback is deployment latency when

he user goes out of the house or office, and latency of switching off

rotocols when the user goes away from the place of interest (with

espect to our sample application, the latency of VEHICLE detection

elays switching off protocols after users board the bus).

We have evaluated our context-detection system using 47 h of

ensor traces collected with the help of 13 volunteers from 3 coun-

ries during their daily commute [3], and used these traces to calcu-

ate the latency of context-detection. The latency of IDLE, WALKING,

nd VEHICLE detection was found to be 3 min, 2.6 min, and 3.6 min

espectively.

The deployment latency of 3 to 4 min when the user goes out of

he house is acceptable, since analysis of over 2,256,911 bus trips from

he transport data used in Section 6.5.3 shows that the average dura-

ion of a journey is 14 min., and can be as large as 156 minutes. Hence,

e expect the latency of deployment and switching off protocols to

e acceptable, since it is still a fraction of the travel time, especially

or long journeys.

. Discussion and future work

.1. Use of WebSockets

We will be re-writing our code to use WebSockets, now increas-

ngly supported in mobile browsers, suitable for push-based notifica-

ions of messages received, to replace AJAX long polling.

.2. Security

While web apps run in the browser sandbox, protocols loaded in

he framework have dangerous access to Android libraries. In the fu-

ure, we will use OSGi’s fine-grained access control to restrict a pro-

ocol’s access.

. Conclusion

In this paper, we proposed a dynamic framework for deploy-

ent of localized DTN web apps. The apps free users of the bur-

en of installing multiple native apps on the phone. They are easy to

pen/close in a browser, and operate only during proximity interac-

ions. To demonstrate their usefulness, we wrote an app for bus stops

o help the physically disabled.

We extended the framework to be ‘context-aware’, to restrict de-

loyment of apps to only those users in relevant context, and to au-

omatically switch off DTN protocols when the user goes away from

he place of interest.

Our analysis shows that the framework has low overhead. Using

eal-device measurements, we show that adding context awareness

an reduce power consumption by at least 53%. In the future, we plan

o enhance web app support, and add better security to the frame-

ork.
cknowledgments

This research was supported in part by the National Re-

earch Foundation Singapore through the Singapore-MIT Alliance for

esearch and Technology (SMART) program, under grant number

-252-000-551-592.

eferences

[1] K. Fall, A delay-tolerant network architecture for challenged internets, in: Pro-
ceedings of the 2003 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, in: SIGCOMM ’03, ACM, New York,

NY, USA, 2003, pp. 27–34, doi:10.1145/863955.863960.
[2] K. Sankaran, A.L. Ananda, M.C. Chan, L.-S. Peh, Dynamic framework for building

highly-localized mobile web dtn applications, in: Proceedings of the 9th ACM Mo-
biCom Workshop on Challenged Networks, in: CHANTS ’14, ACM, New York, NY,

USA, 2014, pp. 43–48, doi:10.1145/2645672.2645675.
[3] K. Sankaran, M. Zhu, X.F. Guo, A.L. Ananda, M.C. Chan, L.-S. Peh, Using

mobile phone barometer for low-power transportation context detection,
in: Proceedings of the 12th ACM Conference on Embedded Network Sen-

sor Systems, in: SenSys ’14, ACM, New York, NY, USA, 2014, pp. 191–205,

doi:10.1145/2668332.2668343.
[4] E. Nordström, P. Gunningberg, C. Rohner, Haggle: a data-centric network archi-

tecture for mobile devices, in: Proceedings of the 2009 MobiHoc S3 workshop
on MobiHoc S3, in: MobiHoc S3 ’09, ACM, New York, NY, USA, 2009, pp. 37–40,

doi:10.1145/1540358.1540370.
[5] M. Skjegstad, F. Johnsen, T. Bloebaum, T. Maseng, Mist: A reliable and delay-

tolerant publish/subscribe solution for dynamic networks, in: 5th International

Conference on New Technologies, Mobility and Security (NTMS), 2012, 2012,
pp. 1–8, doi:10.1109/NTMS.2012.6208757.

[6] A. Petz, C. Julien, The madman middleware for delay-tolerant networks, in: Poster
at HotMobile 2010 (Proceedings of the 11th Workshop on Mobile Computing Sys-

tems and Applications), 2010.
[7] M. Caporuscio, P.-G. Raverdy, H. Moungla, V. Issarny, ubisoap: A service oriented

middleware for seamless networking, in: Proceedings of the 6th International

Conference on Service-Oriented Computing, in: ICSOC ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 195–209, doi:10.1007/978-3-540-89652-4_17.

[8] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, Mobiclique: middleware
for mobile social networking, in: Proceedings of the 2nd ACM workshop on On-

line social networks, in: WOSN ’09, ACM, New York, NY, USA, 2009, pp. 49–54,
doi:10.1145/1592665.1592678.

[9] F. Guidec, Y. Maheo, Opportunistic content-based dissemination in disconnected

mobile ad hoc networks, in: International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies, in: UBICOMM 2007, 2007, pp. 49–54.

10] H. Ntareme, S. Domancich, Security and performance aspects of bytewalla: A
delay tolerant network on smartphones, in: IEEE 7th International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob),
2011, 2011, pp. 449–454, doi:10.1109/WiMOB.2011.6085360.

[11] J. Ott, D. Kutscher, “Bundling the Web: HTTP over DTN”, WNEPT 2006 Workshop

on Networking in Public Transport, QShine Conference, Ontario (2006).
12] A. Balasubramanian, Y. Zhou, W.B. Croft, B.N. Levine, A. Venkataramani, Web

search from a bus, in: Proceedings of the Second ACM Workshop on Challenged
Networks, ACM, 2007, pp. 59–66.

13] J. Chen, L. Subramanian, J. Li, Ruralcafe: Web search in the rural develop-
ing world, in: Proceedings of the 18th International Conference on World

Wide Web, in: WWW ’09, ACM, New York, NY, USA, 2009, pp. 411–420,

doi:10.1145/1526709.1526765.
14] M. Pitkanen, T. Karkkainen, J. Ott, Opportunistic web access via wlan hotspots,

in: Proceedings of the IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2010, IEEE, 2010, pp. 20–30.

15] A. Lindgren, Social networking in a disconnected network: fbdtn: facebook over
dtn, in: Proceedings of the 6th ACM Workshop on Challenged Networks, ACM,

2011, pp. 69–70.
16] L. Peltola, DTN-based Blogging, Special Assignment, Helsinki University of Tech-

nology, Department of Communications and Networking, 2007.

[17] H. Zhuang, H. Ntareme, Z. Ou, B. Pehrson, A service adaptation middleware for
delay tolerant networks based on http simple queue service, in: Proc. of the 6th

Workshop on Networked Systems for Developing Regions (NSDR’12), 2012.
18] D. Carlson, B. Altakrouri, A. Schrader, Ambientweb: Bridging the web’s cyber-

physical gap, in: 3rd International Conference on the Internet of Things (IOT),
2012, IEEE, 2012, pp. 1–8.

http://dx.doi.org/10.13039/501100001474
http://dx.doi.org/10.1145/863955.863960
http://dx.doi.org/10.1145/2645672.2645675
http://dx.doi.org/10.1145/2668332.2668343
http://dx.doi.org/10.1145/1540358.1540370
http://dx.doi.org/10.1109/NTMS.2012.6208757
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0006
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0006
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0006
http://dx.doi.org/10.1007/978-3-540-89652-4_17
http://dx.doi.org/10.1145/1592665.1592678
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0009
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0009
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0009
http://dx.doi.org/10.1109/WiMOB.2011.6085360
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0011
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0011
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0011
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0012
http://dx.doi.org/10.1145/1526709.1526765
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0015
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0015
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00316-3/sbref0018

	Dynamic framework for building highly-localized mobile web DTN applications
	1 Introduction
	2 Related work and motivation
	2.1 HTTP-over-DTN browsing
	2.2 Web-based DTN apps
	2.3 PhoneGap
	2.4 QR codes
	2.5 DTN middleware for mobile
	2.6 Service-adaptation middleware
	2.7 Dynamix

	3 Design and implementation
	3.1 Web app support

	4 Adding context-awareness
	4.1 Motivation for context-awareness
	4.2 Implementation of context-awareness
	4.2.1 Context detection using barometer
	4.2.2 Integration into the framework

	5 Sample DTN web application
	5.1 Use of context-awareness

	6 Evaluation
	6.1 Server versus device-to-device
	6.2 Deployment latency
	6.3 Performance overhead
	6.4 Memory overhead
	6.5 Evaluation of context-awareness
	6.5.1 Accuracy of context detection
	6.5.2 Power saved using context awareness
	6.5.3 Reducing unnecessary communication
	6.5.4 Latency of context-detection

	7 Discussion and future work
	7.1 Use of WebSockets
	7.2 Security

	8 Conclusion
	 Acknowledgments
	 References

