
CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

DASH COMPLIANT CLIENT-SERVER VIDEO HOSTING SERVICE

Abstract— This report describes the design and
implementation of a DASH compliant client-
server video hosting service. The client is an
Android device running Honeycomb 3.2, while
the server is a Linux machine running the Apache
server. This video hosting service brings out the
advantages of using DASH (Dynamic Adaptive
Streaming over HTTP) as a stream switching
technique.

Keywords – DASH; Client-Server Video Streaming;
Android; LAMP

1. INTRODUCTION

Dynamic Adaptive Streaming over HTTP (DASH) is a
stream switching technique currently under
standardization [1]. It is a popular alternative to the
traditional RTP/RTSP/RTCP approach to video
streaming. It is expected to become an international
standard in November 2011 [2].

DASH works by splitting a video stream into smaller
independent pieces called streamlets, each about 10
seconds long. The Streaming client downloads the
streamlets via HTTP, splices them, and plays the video
continuously to the user. Initially, the server provides
a playlist (also called media description file) to the
client. The playlist contains information about each
streamlet, and from where they can be downloaded.
More importantly, the playlist can specify alternate
versions of the streamlets for different bitrates. This
allows the client to adaptively switch between
different bitrates during the video play, by
downloading the appropriate streamlet version.

The implemented video hosting service highlights the
advantages of using DASH. In this project, the Android
client application (running on ASUS Transformer
TF101) allows a user to record a video and upload it
to a central server running Apache. The video is
divided into ten second streamlets, transcoded into
three different bitrate qualities, and stored on the
server. In addition, a playlist file is created on the
server, and made publicly available. Any DASH
Streaming client, such as Apple QuickTime Player, can
use this playlist file to play the video stream. This
report describes the design and implementation of
the video hosting service.

The rest of the report is organized as follows. Section
2 describes related work, and provides motivation for
this project. Section 3 discusses the design
considerations of the video hosting service, and the
implementation details. A comparison of this project
with other streaming solutions is given in Section 4.
Future work is discussed in Section 5. Finally, Section
6 concludes the report.

2. RELATED WORK AND MOTIVATION

2.1. TRADITIONAL STREAMING SOLUTIONS

Traditional streaming solutions utilize three protocols
– RTP [3], RTSP [4] and RTCP [5]. RTP is a general
packet format which encapsulates video and audio
data, and provides services such as timestamps and
sequence numbers. RTSP is a protocol for VCR type
playback functions, such as start, play, pause, and
stop. RTCP provides the client and server with useful
statistical information regarding packet loss, jitter and
Round Trip Time. While RTSP operates over TCP, RTP
and RTCP typically operate over UDP.

These protocols, however, have many drawbacks.
First, the server has to adaptively stream the RTP
packets based on the bandwidth available to the
client. The stream has to be TCP friendly, and not be
too bursty. Calculating the bandwidth and
corresponding appropriate transmission rate is
complicated. Second, the server has to be able to
provide various bitrate qualities of the video at the
granularity of the RTP packet data. This is usually
done using Multiple Description Coding [6], a
complicated coding scheme for error resilience. Third,
each proprietary media type may need a special-
purpose streaming server. Fourth, the RTCP receiver
report frequency decreases with larger number of
receivers, making it difficult for the server to judge
the client’s bandwidth. Fifth, caching of videos in
Content Delivery Networks (such as Akamai) is also
complex, since each proprietary video stream has to
be cached in a different way. Sixth, the client usually
blocks UDP traffic using a firewall running on a NAT
device. This makes it difficult to send RTP packets
over UDP. Seventh, the client may have difficulty
synchronizing the video and audio stream, since the
RTP packets are sent separately, and may arrive with
a lot of jitter. This is leads to the audio playback being

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

out-of-synch with the video (lip movement doesn’t
match the dialogues).

Despite these drawbacks, the RTP/RTSP/RTCP
solution has benefits. The latency is very low, allowing
it to be used for live streaming and video
conferencing. Furthermore, the switching between
video qualities can be done at a fine granularity level.

2.2. PROPRIETARY DASH STREAMING SOLUTIONS

The concept of dividing the video into streamlets was
introduced by Move Networks [7]. Each streamlet is
encoded into low, medium and high qualities, and
downloaded individually and independently by the
client over HTTP. The client can request a particular
quality streamlet based on the available bandwidth,
and switch qualities dynamically as the bandwidth
changes. Such a streaming solution pushes the
complexity from the server to the client.

Apple later adopted this solution in the QuickTime
Streaming Server, called HTTP Live Streaming [9].
Microsoft also adopted this approach in its IIS Server,
called Smooth Streaming [10]. Microsoft supports
only the Silverlight client, unlike Apple which
supports any playback client implementing DASH.
Apple also included DASH support in iphone3 [8].
Other popular DASH implementations are listed in [9],
which includes Android Honeycomb 3.0 as a DASH-
compliant client.

A comparison of Apple’s Live Streaming, Adobe’s
Dynamic Streaming and Microsoft’s Smooth
streaming is given nicely in a tabular format in [21]. It
claims that Smooth Streaming has a latency of 1.5
seconds as compared to Apple’s 30 second latency.
But, since the comparison is given in the IIS website,
the comparison may not be neutral, and may be
biased towards Smooth Streaming.

All the implementations described above are
proprietary. Currently, there is a standardization
effort for the DASH protocol. Once this becomes an
open international standard, any client/server video
streaming can implement DASH without licensing
issues.

2.3. DASH AS AN OPEN STANDARD

The latest draft standard of DASH is given in [1]. It is
expected to become a standard in November 2011.

Using DASH has many advantages. First, the server is
simplified into a normal stateless HTTP web server

like apache, which is free and has no licensing costs.
Second, there are no firewall issues with DASH, since
it uses the standard port 80 (http). Third, DASH works
well with normal Web caching, since streamlet
requests can be treated the same as other web
requests. Fourth, the complexity is pushed from the
server to the client. This is useful, since it is the client
who ultimately knows about the bandwidth available,
and can switch streamlets accordingly. Moreover,
clients (such as smartphones) are becoming more
powerful, allowing such complexity to be
implemented practically. Fourth, synchronizing audio
and video is simpler – there is no jitter, since both
audio and video are contained in the streamlet as
related tracks. Fifth, the DASH protocol is inherently
simple, especially on the server side, gaining
acceptance easily as compared to more complicated
approaches such as layered video. Sixth, which is
more important from the point of view of an open
standard, is that once a playlist file is published, any
DASH-compliant player can play the video stream.
This is in contrast to problems playing proprietary
video formats, for example playing Apple video file
formats in Windows Media Player.

However, DASH does have drawbacks. The switching
between different bitrates can happen only at
streamlet boundaries, which can be as long as 10
seconds. In RTP, the switching can occur at the
granularity of Application Data Units. In addition,
DASH adds latency to the video distribution, making it
unsuitable for real-time video conferencing or critical
operations, such as remote doctor surgical operations.
This is because the server has to constantly update
the playlist files, and the client has to fetch the
updated playlist files repeatedly. The update and fetch
operations have timing constraints, which introduces
the latency. The other disadvantage is that the client is
now complicated – it has to download streamlets well
in advance, monitor the bandwidth, buffer and splice
streamlets, among other functionalities.

2.4. PROJECT MOTIVATION

The video hosting service attempts to portray the
advantages of application developers using DASH.
Previously, developers had to write their own
streaming client, or deal with licensing costs and
issues of using proprietary video servers. Now
however, by storing the video in a DASH-compliant
format on the server, any DASH streaming client can

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

play the video uploaded by the user. The developer
does not have to write the streaming client himself.

In this project, the videos uploaded on the server can
be played by Apple’s QuickTime player, Android
Honeycomb 3.0, VLC player, and other DASH
streaming clients. This automatically broadens the
viewing audience. Any improvement in the Apple
streaming client automatically benefits the developed
application.

In addition, the server-side implementation is
simplified, since the well-known LAMP stack is used.
On the other hand, the project does not support live
streaming, since the server does not update the
playlist files within the timing constraints of the Apple
Draft Standard [11], and the client does not upload
the video while recording.

Since the DASH protocol is being used to stream
videos, all the advantages described previously also
apply.

3. DESIGN AND IMPLEMENTATION

This section describes the design of the client-server
video hosting service.

The client (an Android device) allows the user to
record a video, and upload it to the server. The server
makes the playlist file for that video available publicly.
The uploaded video can then be viewed on a DASH-
compliant streaming client such as Apple QuickTime
Player by specifying the playlist file.

Figure 1: Data-flow diagram for the Client and
Server functionality

The Android device used is an ASUS Transformer
TF101 [12], running Android Honeycomb 3.2. The

server used is a Linux server running Apache (the
LAMP stack). The Android device allows us to
experiment with video-streaming ‘on-the-go’ while
the connectivity and bandwidth might change
frequently. The LAMP server is used since it is free,
stable, and comes with no licensing costs.

The functionality of both the client and server is
shown in Figure 1, in the form of a data-flow diagram.
The implementation details are shown in italics in the
brackets.

Each step is discussed in detail below –

3.1. RECORD VIDEO

Android Honeycomb provides a Java API for
development of Android applications. Among the
classes of the API is the MediaRecorder class [13],
which allows the programmer to record a video, using
the back camera or the front camera, and allows the
encoder, bitrate, and resolution to be specified. In this
project, the video is recorded at 3 Mbps, with a
resolution of 720x480, in the MPEG4 encoding video
format.

3.2. DIVIDE INTO STREAMLETS

The resulting MP4 video file is then divided into 10
second streamlets. The choice of a proper time length
of a streamlet is important. A very small streamlet
(say 2 seconds) would lead to a large overhead while
streaming the video, since each streamlet is itself an
MP4 file containing file headers. However, a large
streamlet (say 5 minutes) would reduce the
granularity of stream switching, since the video
quality can be switched only at the streamlet
boundary. An optimal and typically used length is 10
seconds.

For dividing the video into streamlets, the MP4Parser
Java library [14] has been used. It parses the MP4
Container into its constituent atoms [15], and allows
the programmer to perform modifications. It also
allows the programmer to manipulate the video at the
track level.

Dividing the video tracks into chunks is not trivial.
Each track consists of samples. The track can be cut
only at the beginning of a sample. More importantly,
we need to split the track at a synch sample, which is
the beginning of an independent Application Data
Unit (I-frame in Video). If there are more than one
track (audio track and video track), then the synch
samples of both tracks should intersect.

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

Figure 2 gives an overview of how the splitting takes
place. The nearest synch sample before time 10
seconds is found using the Time-to-Sample and Synch
Sample Container atoms [15] in the MP4 file. In this
example, it can be seen that we cannot cut the track at
exactly 10 seconds. Moreover, it can be cut only at the
nearest synch sample before 10 seconds, in this case
sample number 4 at time 9.5 seconds. The streamlets
are now [1, 4) and [4, 7]. Sample 4 should not be
repeated in consecutive streamlets.

Figure 2: Splitting the track into streamlets based
on the synch samples

Since the development of the application is on a tablet
with limited memory, care has to be also taken about
the memory used while splitting. If the video is first
segmented completely into streamlets before
uploading, then the memory (in RAM or SDcard) gets
filled up with the numerous tiny streamlet files.
Instead, a better approach is to upload on-the-fly. As
each streamlet is created, it is uploaded, and then the
memory for that streamlet is released before the next
streamlet is created.

3.3. UPLOAD STREAMLETS

The streamlet files are uploaded using a Multipart
HTTP Post request [16] to the server. The Post
request contains data in the Multipart MIME Message
format, suitable for file upload. An example is given in
Figure 3.

Figure 3: Example of MIME Multipart Message

The example shows how a file named “file1.txt” is
uploaded, along with an attribute field called “submit-
name”. The message contains two parts, one for the
attribute and one for the file. Using this type of HTTP
Post Request is suitable for uploading the streamlet
files, as well as attributes such as the streamlet
duration and sequence number.

A Java library called HttpComponents [17] developed
by Apache provides an API for easily creating a
Multipart HTTP Post request, and sending it to an
HTTP server. Since the streamlets are uploaded one
by one in succession, it would be advantageous to
keep the TCP connection open during the entire
upload process. Otherwise, during each streamlet
upload, TCP has to repeatedly do a lengthy handshake
to set up the connection.

Using HTTP to do an upload is simple, since the
protocol is stateless. However, to provide extra
functionality (such as resuming a previous upload
from the point it got disconnected), the server needs
to maintain state information about the upload (such
as the last sequence number of the streamlet it
received).

3.4. RECEIVE AND STORE STREAMLETS

The server side has been implemented in PHP, since it
is free, available at no cost, and is easy to code. The
server runs Linux Apache HTTP server [18]. The
server’s PHP scripts provide an HTTP interface to the
client. This interface allows the client to upload a
streamlet, query the list of videos, add and remove
playlists, etc. The information about the videos
uploaded is stored in MySQL database. It includes
details such as the video name, duration, creation
date, playlist file, and others.

In particular, the server keeps track of the last
sequence number of the streamlet it received. If the
upload gets interrupted for some reason, the client
can later query the server about the last streamlet it
received, and resume the upload from the point it left

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

off. Using sequence numbers provides a rudimentary
way of resuming partial uploads.

Once the streamlets are received on the server, there
are various ways in which they could be stored and
served to the video player. Three possibilities, along
with their advantages and disadvantages, are given in
[19]. Figure 4 shows them pictorially.

(a)Normal Chunking

(b) Chained Chunks

(c) Byte Ranges

Figure 4: Alternatives for storing and serving
streamlets to the client

One way is to store each streamlet as a separate
independent file. The client requests each file as
needed. The second way is to concatenate the
streamlets into one big file. The client then requests

byte ranges instead of files. However, each byte range
still includes the streamlet header. The third way is to
not use streamlets at all. The server simply stores the
video in different qualities. The client can request
arbitrary overlapping byte ranges. As can be seen, the
complexity increases on the client side as we go from
the first method to the last method, while the server
becomes simplified.

In this project, the Normal Chunking technique is
used, which is also the direction in which the DASH
standard is going, and many streaming client
implementations support. The streamlets are stored
as independent files in a repository folder.

3.5. TRANSCODE STREAMLETS INTO 3 QUALITIES

Once a streamlet is received, it is transcoded into 3
qualities –

a. 720x480 3 Mbps H.264/AVC and AAC audio
(High)

b. 480x320 768 kbps H.264/AVC and AAC audio
(Medium)

c. 240x160 200 kbps H.264/AVC and AAC audio
(Low)

Transcoding is done using the ffmpeg library [20].
Ffmpeg is a powerful library capable of interpreting
almost any video/audio format, and performing
operations on them.

The qualities range from 200 kbps to 3 Mbps, which
covers a large range of typical bandwidths.

3.6. CONVERT TO MPEG2 TRANSPORT STREAMS

The next step is to convert each MP4 file of each
quality into an MPEG2 transport stream, suitable for
transfer over a network with packet loss. This
conversion is also done using ffmpeg.

3.7. PUBLISH PLAYLIST FILE

Finally, the server creates a playlist file as per the
Apple Live Streaming draft standard specifications
[11]. There is a master playlist file, which points to 3
other playlist files, corresponding to the low, medium
and high qualities. Each playlist file in turn points to
the MPEG2 transport stream files obtained earlier.

An example of the master playlist file and a streamlet
playlist file is given in Figure 5.

These playlist files, along with the streamlets, should
be made available publicly. If the server provides a

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

link to the master playlist file, then any DASH-
compliant streaming client should be able to open the
playlist file and download the required streamlets.

(a) Master playlist file

(b) Streamlet Playlist file

Figure 5: Example of Master and Streamlet playlist
files

The server does not support live streaming. In case of
a live stream, the playlist files have to be updated
carefully as per the timing constraints given in [11]. If
the timing constraints are not respected, then the
client could download outdated playlist files, or not
download them frequently enough to get information
about the newly updated streamlets.

4. GENERAL DISCUSSION AND COMPARISON

The video hosting service enables the user to record
and upload videos to a DASH-compliant server. Any
DASH client such as Apple QuickTime Player can play
such videos. This section gives a comparison of this
solution to other streaming solutions, followed by the
learning experience gained by doing this project, and
the difficulties encountered.

Without DASH, the application developer would have
to either use a proprietary video streaming server
(and face licensing costs), or develop his own
streaming server and client (and face the coding
complexity). With DASH, the application is much
easier to develop. The server side in particular is
simplified, since it involves only transcoding and
generation of playlist files. Moreover, the target

audience is wider, since any client supporting DASH
can play the uploaded videos, whether it is Apple
QuickTime, or Android Honeycomb, or VLC player,
and many others.

This project has been a learning experience in
multiple ways. I understood how MP4 files are
conceptually structured, and how live streaming
works. In addition, I learnt a lot about Android
programming, especially the newly introduced APIs. I
faced two main difficulties in this project – First, I
initially had difficulty understanding the MP4Parser
library (since I didn’t know what atoms were).
However, after reading the Apple QuickTime spec, it
was easy to understand what the library was doing.
Second, I had difficulty checking whether my playlists
were ok, since media players do not always play the
media list properly (Honeycomb frequently crashes).
Later I checked the playlists on VLC player. Overall
the project was a reasonable milestone to finish in
two months, and was a great learning experience in
the process.

5. FUTURE WORK

The project can be improved in many ways. First,
support can be added for live streaming. However,
this is difficult since Android APIs do not make it
possible to record and process the video at the same
time. Second, the chunking can be done on the server
side, since it has the processing speed and power
supply. Third, the server-side should perform
additional checks to be more robust, such as - the
type of file uploaded should be MP4, the duration of
the streamlet should be within limits, and the type of
encoding of the streamlets should match.

Using DASH introduces latency to a live stream. The
latency comes from the multiple TCP connections to
download each streamlet, and the time to decode the
header of each streamlet. The techniques shown in
Figure 4 could possibly reduce this latency
significantly.

6. CONCLUSION

In the project, a client-server video hosting service
was implemented using Android and a LAMP server.
It allows a user to record and upload videos, which
can later be streamed on a variety of DASH-compliant
players. This project demonstrated the simplicity and
advantages of using DASH as a stream switching
solution.

CS5248 Dash Final Report (Student ID: A0068257W ; Name: Kartik Sankaran ; Email: kartiks@comp.nus.edu.sg)

REFERENCES

[1] Dynamic Adaptive Streaming over HTTP (DASH)
Part 1: Media presentation description and
segment formats
http://www.iso.org/iso/iso_catalogue/catalogue_t
c/catalogue_detail.htm?csnumber=57623

[2] Dynamic Adaptive Streaming over HTTP

http://en.wikipedia.org/wiki/Dynamic_Adaptive_
Streaming_over_HTTP

[3] Real Time Transport Protocol
http://en.wikipedia.org/wiki/Real-
time_Transport_Protocol

[4] Real Time Transport Control Protocol
http://en.wikipedia.org/wiki/RTP_Control_Protoc
ol

[5] Real Time Streaming Protocol
http://en.wikipedia.org/wiki/Real_Time_Streamin
g_Protocol

[6] Multiple Description Coding
http://en.wikipedia.org/wiki/Multiple_descriptio
n_coding

[7] Video Streaming by Move Networks
http://cable.doit.wisc.edu/SMPTE/02-
Infrastructure%20Considerations%20for%20Nex
t%20Generation%20Media/Edwards.TP.01-15-
2008.pdf

[8] Apple lauches HTTP Live Streaming standard in
iphone3
http://www.appleinsider.com/articles/09/07/08/
apple_launches_http_live_streaming_standard_in_i
phone_3_0.html

[9] HTTP Live Streaming
http://en.wikipedia.org/wiki/HTTP_Live_Streami
ng

[10] IIS Smooth Streaming
http://www.iis.net/download/SmoothStreaming

[11] HTTP Live Streaming Draft Standard
http://tools.ietf.org/html/draft-pantos-http-live-
streaming-06

[12] ASUS Transformer TF101
http://www.asus.com/Eee/Eee_Pad/Eee_Pad_Tran
sformer_TF101/

[13] Android Developer Reference: MediaRecorder
http://developer.android.com/reference/android
/media/MediaRecorder.html

[14] MP4Parser library
http://code.google.com/p/mp4parser/

[15] Apple QuickTime File Format 2001
http://developer.apple.com/standards/qtff-
2001.pdf

[16] MIME Multipart Message
http://en.wikipedia.org/wiki/MIME#Multipart_m
essages

[17] Apache HttpComponents Library
http://hc.apache.org/httpclient-3.x/

[18] Apache HTTP Server
http://httpd.apache.org/

[19] Ginger’s Blog: Adaptive HTTP Streaming for Open
Codecs
http://blog.gingertech.net/2010/10/09/adaptive-
http-streaming-for-open-codecs/

[20] Ffmpeg library
http://ffmpeg.org/

[21] Adaptive Streaming Comparison
http://learn.iis.net/page.aspx/792/adaptive-
streaming-comparison

http://ffmpeg.org/

